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Abstract

The remote sensing of Earth surface changes is an active research field aimed at the development of methods and data products needed by

scientists, resource managers, and policymakers. Fire is a major cause of surface change and occurs in most vegetation zones across the

world. The identification and delineation of fire-affected areas, also known as burned areas or fire scars, may be considered a change

detection problem. Remote sensing algorithms developed to map fire-affected areas are difficult to implement reliably over large areas

because of variations in both the surface state and those imposed by the sensing system. The availability of robustly calibrated,

atmospherically corrected, cloud-screened, geolocated data provided by the latest generation of moderate resolution remote sensing systems

allows for major advances in satellite mapping of fire-affected area. This paper describes an algorithm developed to map fire-affected areas at

a global scale using Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance time series data. The algorithm is

developed from the recently published Bi-Directional Reflectance Model-Based Expectation change detection approach and maps at 500 m

the location and approximate day of burning. Improvements made to the algorithm for systematic global implementation are presented and

the algorithm performance is demonstrated for southern African, Australian, South American, and Boreal fire regimes. The algorithm does

not use training data but rather applies a wavelength independent threshold and spectral constraints defined by the noise characteristics of the

reflectance data and knowledge of the spectral behavior of burned vegetation and spectrally confusing changes that are not associated with

burning. Temporal constraints are applied capitalizing on the spectral persistence of fire-affected areas. Differences between mapped fire-

affected areas and cumulative MODIS active fire detections are illustrated and discussed for each fire regime. The results reveal a coherent

spatio-temporal mapping of fire-affected area and indicate that the algorithm shows potential for global application.

D 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Fire is a prominent disturbance factor and is an agent of

environmental change with local to regional impacts on

land use, productivity, carrying capacity, and biodiversity,
0034-4257/$ - see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2005.04.007

* Corresponding author.

E-mail address: droy@kratmos.gsfc.nasa.gov (D.P. Roy).
and regional to global impacts on hydrologic, biogeo-

chemical, and atmospheric processes (Csiszar et al., 2004).

Fire plays a role in a number of land surface atmosphere

interactions and is a significant source of trace gases and

aerosols impacting atmospheric chemistry and the radiation

budget (Crutzen & Andreae, 1990; French et al., 2003;

Govaerts et al., 2002; Scholes & Andreae, 2000; van der

Werf et al., 2003). Fire is an important ecosystem process

effecting vegetation structure and composition (Johnson &

Miyanishi, 1997) and in many land use systems is a
ent 97 (2005) 137 – 162
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proximate cause or indicator of land cover change (Bucini

& Lambin, 2002; Cochrane, 2003; Janetos & Justice,

2000). The frequency, intensity, season, and type of fire

that prevails in an area are collectively referred to as the

fire regime. It remains unclear if fire regimes will change

as human population, their land use practices, and the

climate change (Stocks, 1998; Murphy et al., 1999; UNEP,

2002). Certainly, there is a perceived increasing incidence,

extent, and severity of uncontrolled burning globally that

has lead to calls for international environmental policy

concerning fire (Stocks et al., 2001). Such concerns

strengthen the need to provide reliable fire information to

policymakers, scientists, and resource managers. The

satellite derived information, includes the location, timing,

instantaneous radiative power, temperature and size of

active fires, and the spatial extent of burning. In this paper,

we use the term ‘‘fire-affected area’’ to denote the area

subjected to fire. This is in recognition that fire often does

not burn the entire surface it passes over and because more

pejorative terms, such as ‘‘fire scar’’ or ‘‘burn scar’’, do not

reflect the beneficial ecological effects of fire in many

parts of the world.

Satellite remote sensing provides the only means of

monitoring vegetation burning at regional to global scale.

The Vegetation Fire Information System proposed at the

Dahlem Conference on Fire in the Environment in 1992

provided a vision for an information system composed of

satellite and in-situ observations to serve the global change

community (Crutzen & Goldammer, 1993). Subsequently,

remote sensing requirements for measuring the timing and

spatial extent of fires globally have been included in

summary documents generated by the Committee on Earth

Observation Satellites (CEOS) and the Global Climate

Observing System (GCOS) (CEOS, 2000; GCOS, 1997).

Satellite data have been used to monitor fire globally for

more than two decades using active fire detection

algorithms developed for different sensors to take advant-

age of the elevated radiance signal of hot fires (Arino &

Rosaz, 1999; Dozier, 1981; Elvidge et al., 2001; Giglio et

al., 2003; Matson & Dozier, 1981; Prins & Menzel, 1992).

It is well established that for most fire regimes satellite

active fire detections do not reliably define the fire-

affected area. This is because the satellite may not

overpass sufficiently frequently to capture the spatial

details of how fires propagate across landscapes, and

because clouds and optically thick smoke may preclude

active fire detection (Justice et al., 2002b; Robinson,

1991). Recognizing these limitations, methods to map fire-

affected area have been developed in the last decade using

moderate and coarse spatial resolution satellite data (e.g.,

Barbosa et al., 1999; Eva & Lambin, 1998a; Fredericksen

et al., 1990; Fraser et al., 2000; Kasischke & French,

1995; Roy et al., 2002b; Simon et al., 2004; Tansey et al.,

2004; Zhang et al., 2003). Most approaches capitalize on

the spectral impact of fire effects (associated with

deposition of charcoal and ash, removal of vegetation,
and alteration of the vegetation structure) and use multi-

temporal satellite data, which provide several advantages

over single date data for mapping fire-affected areas (Eva

& Lambin, 1998b; Pereira et al., 1997). Despite the range

of studies undertaken, there is no consensus algorithm and

no global algorithm has yet been implemented on more

than 1 year of remotely sensed data (Simon et al., 2004;

Grégoire et al., 2003). Comparison of fire-affected area

products generated recently using contemporaneous time

series data sensed by the Moderate Resolution Imaging

Spectroradiometer (MODIS) (Roy, 2003), the Systeme

Pour l’Observation de la Terre (SPOT-VEGETATION)

(Tansey et al., 2004), and the Along Track Scanning

Radiometer (ATSR-2) (Simon et al., 2004) for southern

Africa indicate substantive differences and highlight the

need for rigorous product validation (Korontzi et al.,

2004).

The availability of robustly calibrated, atmospherically

corrected, cloud-screened, geolocated data provided by the

latest generation of moderate resolution remote sensing

systems allows for major advances in satellite mapping of

fire-affected area. Arguably, these data allow for the

development of more physically based algorithms that are

less dependent upon imprecise but noise tolerant classi-

fication techniques. As part of NASA’s Earth Observing

System (EOS), the Moderate Resolution Imaging Spec-

troradiometer (MODIS) is onboard the Terra (launched

1999) and Aqua (launched 2001) polar orbiting satellites

and their data are being used to generate global coverage

data products on a systematic basis (Justice et al., 2002a).

The algorithm used to define the MODIS active fire

product has been refined several times (Giglio et al., 2003;

Justice et al., 2002a; Kaufman et al., 1998). A comple-

mentary MODIS algorithm defined to map fire-affected

area has been developed and demonstrated in southern

Africa (Roy, 2003; Roy et al., 2002b). The algorithm uses

a bi-directional reflectance model-based change detection

approach to map the 500 m location and approximate day

of burning. It detects the approximate date of burning by

locating the occurrence of rapid changes in daily MODIS

reflectance time series. The algorithm maps the spatial

extent of recent fires and not of fires that occurred in

previous seasons or years. The algorithm is an improve-

ment on previous methods due to the use of a bi-

directional reflectance model to deal with angular varia-

tions found in satellite data and the use of a statistical

measure to detect change probability from a previously

observed state. The algorithm does not use training data

and is adaptive to the number, viewing, and illumination

geometry of the data, and to the amount of noise in the

data. This paper describes refinements and improvements

made to the algorithm for its systematic global application

and illustrates its functioning for southern African,

Australian, South American, and Boreal fire regimes. The

improved algorithm will be implemented in the MODIS

land production system in an attempt to systematically map
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fire-affected areas globally for the 6+-year MODIS

observation record.
2. Data

The MODIS fire-affected area product is generated

from time series of daily 500 m MODIS land surface

reflectance data derived in the manner described below.

Measurements in the seven MODIS land surface reflec-

tance bands (Table 1) are corrected for atmospheric effects,

including aerosols (Vermote et al., 2002). These data and

associated quality assessment information are gridded into

a Level 2G format that stores the MODIS observations

sensed over a 12-h period (Wolfe et al., 1998). The Level

2G product is defined in the MODIS land product equal

area sinusoidal projection in geolocated tiles. Each tile has

fixed earth-locations covering an area of approximately

1200�1200 km (10-�10- at the equator). Globally, there

are 460 non-overlapping tiles, of which 326 contain land

pixels. The L2G data are processed into daily intermediate

files where all high view zenith (>65-), high solar zenith

(>65-), bad quality, high aerosol, snow, cloudy, and non-

land, MODIS observations labeled in the Level 2G land

surface reflectance product are rejected. These data

provide good quality observations of the land surface,

although shadow contaminated observations and a minor-

ity of cloud, snow, and water observations may remain.

When more than one MODIS observation is sensed over a

given pixel per day, occurring at high MODIS view zenith

angles and at latitudes greater than approximately 30-, the
observation that has the greatest ratio of observation to

pixel gridcell area is retained with the associated viewing

and solar angles (Wolfe et al., 1998). This gives a

maximum of one observation per geolocated pixel per

day. In this paper, all results are shown using the most

recently processed Collection 4 MODIS Terra satellite data

only. The MODIS 1 km night and day time active fire

product, which locates 1 km MODIS pixels containing

certain actively burning fires at the time of satellite

overpass (Giglio et al., 2003), is used to verify the

algorithm.
Table 1

Summary of the MODIS 500 m land surface reflectance bands and

conservative land surface reflectance one standard deviation (rk) noise

estimates (Vermote et al., 2002; Vermote, personal communication)

MODIS band Central wavelength (Am) rk (reflectance scaled 0–1)

1 0.645 0.004

2a 0.858 0.015

3 0.469 0.003

4 0.555 0.004

5a 1.240 0.013

6a 1.640 0.010

7a 2.130 0.006

a Denotes MODIS bands used by the global fire-affected area mapping

algorithm.
3. Study regions

The MODIS algorithm to map global fire-affected area

was refined by prototyping focused on study regions in

southern Africa, Australia, South America, and the Russian

Federation. These four study regions were chosen to

encompass tropical, sub-tropical, boreal, temperate, and

arid environments. They are also located where there are

networks of fire researchers, including those supporting the

Global Observations of Forest Cover/Global Observation of

Landcover Dynamics (GOFC/GOLD)-Fire initiative (Justice

et al., 2003), who are available to assess and help validate

the MODIS fire products. Importantly, the study regions

capture a range of the major factors that influence the

accuracy of fire-affected area products derived from satellite

data. These factors include the spatial characteristics of fire-

affected areas, the degree of spectral change from unburned

to burned vegetation, and spectral changes of a similar

direction and magnitude that are not caused by burning (Eva

& Lambin, 1998b; Roy et al., 2002b, in press). The study

regions cover 29 MODIS tiles and account for approx-

imately 9% of the global land surface.

3.1. Southern Africa

The region encompassed by the Southern Africa Fires and

Atmospheric Research Initiative (SAFARI 2000) (Swap et

al., 2002) was selected as the first regional test of the

MODIS fire-affected area product. This region includes all

of sub-equatorial Africa, including Madagascar, and com-

prises 15 MODIS tiles (Fig. 1). The largest portion of

southern Africa has a climate that is characterized by a single

rainy season and a long dry season. This rainfall seasonality

provides a fire-prone climate and the savannas of Africa are

thought to experience the most extensive biomass burning in

the world (Cahoon et al., 1992; Scholes & Andreae, 2000).

Most fires occur in the dry season, from approximately May

to October, when herbaceous vegetation is either dead

(annual grasslands) or dormant, and when deciduous trees

have shed their leaves, thereby contributing to an accumu-

lation of dry and fine fuels that are easily combustible (Frost,

1999). Fire is integral to many agricultural practices and is

an important land management tool. The majority of fires are

thought to be anthropogenic, with non-anthropogenic light-

ning ignited fires associated with early wet-season thunder-

storms (Frost, 1999). A prototype southern Africa fire-

affected area product was created (Roy, 2003) using the

algorithm described by Roy et al. (2002b). This prototype

was used in support of SAFARI 2000 to model trace gasses

and emissions (Korontzi et al., 2004) and has subsequently

been refined using the algorithm described in this paper.

3.2. Australia

Like southern Africa, much of Australia has a fire-prone

climate. The Australian study region comprises 7 MODIS



Fig. 1. Southern Africa study region and example MODIS fire-affected areas. Country borders (black lines) and 10- meridians (from 10- to 50- East) and

parallels (from 0- to 30- South) are shown (white lines). MODIS 500 m fire-affected areas mapped for 1.5 months are illustrated with a rainbow color scale to

denote the approximate day of burning from June 23rd (violet) to August 8th (red), 2002. Extensive burning is evident in much of Angola and the southern

parts of the Democratic Republic of the Congo. Areas not mapped due to persistent cloud are shown white. The fire-affected areas are shown superimposed on

500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and blue (0.469 Am) reflectance to provide geographic context. Water bodies are

colored lilac. The black areas denote adjacent MODIS tiles not included in this 15-tile study region. See Fig. 13 for an enlarged view of a 450�250 km subset.
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tiles (Fig. 2) that encompass more than two thirds of

Australia, including tropical parts in the Northern Territory

and northern western Australia, and more arid and

temperate regions in the centre and to the south of western

Australia, south Australian, and New South Wales. The

fire season in the tropical savannas is determined by the

annual arrival and departure of the monsoon (Tapper et al.,

1993). Fire is extensive and frequent in Australia’s

savannas, occurring from approximately March to Decem-

ber (Williams et al., 2002). Recent continental-scale fire

mapping using NOAA-AVHRR satellite data for 1997 to

2001 has shown that the greatest extent of fire occurs in

the tropical savanna of northern Australia, and of this

region an average of 19% burned annually (Russell-Smith

et al., 2003). Spinifex grasslands cover more than 25% of

the Australia landscape and grassland fires can be

extensive, frequently exceeding many thousands of square

kilometers (Bradstock et al., 2002). In semi-arid and arid

Australia, fire occurrence is strongly dependent on herba-

ceous plants that become dominant after irregular high-

rainfall periods. Fires are lit naturally by lightning,

especially in the late dry season, and the use of fire by

aboriginal peoples mainly for pastoral purposes is also

extensive in northern Australia (Dyer et al., 2001; Russell-

Smith et al., 2003). Accidental fires and arson fires are

frequently reported in the media.
3.3. South America

The South America study region comprises 3 MODIS

tiles in the humid tropics (Fig. 3) including parts of Brazil

(Amazonas, Para, Mato Grosso), most of Bolivia, parts of

Peru and Chile to the West, and the northern tip of Paraguay.

Fires in this region are largely anthropogenic and are

typically associated with clearing of new land and main-

tenance of previously cleared lands (Cardoso et al., 2003; de

Miranda & John, 2000). Fires predominate in the dry season

when lower moisture conditions facilitate the use of fires for

land management (Setzer et al., 1992). The grassland/

savanna cerrado is considerably more flammable than the

intact tropical evergreen forests. In extremely dry years,

uncontrolled fires caused by current land use practices have

become a concern due to the potentially vast area of tropical

evergreen forest affected (Setzer & Pereira, 1991), with a

positive feedback postulated wherein successive fires

become more intense and more susceptible to fires

originating from nearby pasturelands and agricultural fields

(Cochrane et al., 1999).

3.4. Russian Federation

The study region comprises 4 MODIS tiles (Fig. 4A and

B) that encompass boreal forests to the north and south of



Fig. 2. Australia study region and example MODIS fire-affected areas. State borders (black lines) and 5- meridians (from 115- to 150- East) and parallels (from

10- to 40- South) are shown (white lines). MODIS 500 m fire-affected areas mapped for 1 month are illustrated with a rainbow color scale to denote the

approximate day of burning from October 1st (violet) to October 31st (red), 2002. Extensive burning is evident in the Northern Territory and the NE of western

Australia. The fire-affected areas are shown superimposed on 500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and blue (0.469

Am) reflectance. Water bodies are colored lilac. The black areas denote adjacent MODIS tiles not included in this 7-tile study region. See Fig. 14 for an enlarged

view of a 450�250 km subset.
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the Arctic Circle and East of the Ural Mountains. Tree

growth is limited by permafrost and a very short growing

season (Stocks et al., 1996). Fire impacts large areas of

boreal forest, where evidence of past fire history is dominant

in the vegetation patterns (Goldammer & Furyaev, 1996;

Shvidenko & Nilsson, 2000). The fire season in southern

Siberia begins in spring from early May, moves northward

as spring arrives at higher latitudes, and peaks in the dry

summer (Korovin, 1996). Approximately 70% of the fires in

the Russia Federation are thought to occur in light

coniferous pine and larch-dominated stands, and only about

15% in dark coniferous boreal forest (Korovin, 1996).

Surface fires are typical, but patchy crown fires are common

and may dominate in severe fire seasons to cause near total

tree mortality (Furyaev, 1996; Korovin, 1996). A large

percentage of fires are caused by human activities but where

population densities are low they are caused by lightning

(Korovin, 1996).
4. Original bi-directional reflectance model-based

change detection algorithm

Our goal is to develop a global algorithm to continuously

map recently occurring fire-affected areas on a systematic

and automated basis from MODIS observations. A number
of substantive improvements have been made to the bi-

directional reflectance model-based change detection algo-

rithm described by Roy et al. (2002b). We overview this

original algorithm below and describe algorithm improve-

ments in subsequent sections. We refer to the improved

algorithm as the global algorithm.

Most land surfaces are strongly anisotropic reflectors at

reflective wavelengths (Barnsley et al., 1997; Kimes, 1983;

Pinty & Verstraete, 1992). This anisotropy, combined with

the angular sensing and illumination variations present in

wide field-of-view satellite time series data, introduce bi-

directional reflectance variations that complicate the iden-

tification of surface change. The majority of coarse/

moderate spatial resolution algorithms developed to map

fire-affected areas use spectral indices. Spectral indices have

attractive properties, such as reducing certain shadow,

illumination, and topographic induced variations (Holben

& Justice, 1981), but can still have significant directional

effects (Gao et al., 2002; Meyer et al., 1995). For example,

Leroy and Hautecoeur (1999) found daily spectral index

variations of the order 0.05–0.2 due to directional effects in

POLarization and Directionality of the Earth’s Reflectances

instrument (POLDER) data over the African continent.

Failure to account for these effects implies a commensurate

reduction in change detection capabilities. Regardless of

directional effects, simple modeling work has demonstrated



Fig. 3. South America study region (parts of Brazil, Bolivia, Peru, Chile, and Paraguay) and example MODIS fire-affected areas. Country borders (black lines)

and 5- meridians (from 70-, 65-, 60-, 55- to 50- West) and parallels (from 0- to 20- South) are shown (white lines). MODIS 500 m fire-affected areas mapped

for 1 month are illustrated with a rainbow color scale to denote the approximate day of burning from August 1st (violet) to August 31st (red), 2002. Extensive

burning is evident in NE Bolivia and SW and eastern parts of Brazil. Areas not mapped due to persistent cloud are shown in white. The fire-affected areas are

shown superimposed on 500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and blue (0.469 Am) reflectance. Water bodies are

colored lilac. The black areas denote adjacent MODIS tiles not included in this 3-tile study region. See Fig. 15 for enlarged views of two 250�250 km subsets.
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that ratio spectral indices may be sensitive in a non-linear

manner to the size and combustion completeness of the fire

and so may provide variable detection capabilities when

used to map fire-affected areas (Roy & Landmann, in press).

Composited satellite data are used to reduce the impact of

atmospheric contamination and directional effects (Holben,

1986) and are used by the majority of algorithms developed

to map fire-affected areas from coarse and moderate spatial

resolution satellite data. Directional reflectance effects

remain in composited data but restricting observations to

close-to-nadir to minimize their impact reduces the effective

temporal sampling frequency and discards the potentially

useful information found in off-nadir observations (Cihlar et

al., 1994).

The bi-directional reflectance model-based change detec-

tion algorithm is a generic change detection method that is

applied independently to geolocated pixels over a long time

series (weeks to months) of reflectance observations (Roy et

al., 2002b). Reflectances sensed within a temporal window

of a fixed number of days are used to predict the reflectance

on a subsequent day. A statistical measure is used to

determine if the difference between the predicted and

observed reflectance is a significant change of interest.

Rather than attempting to minimize the directional informa-

tion present in wide field-of-view satellite data by compo-

siting, or by the use of spectral indices, these information

are used to model the directional dependence of reflectance.
This provides a semi-physically based method to predict

change in reflectance from the previous state.

The directional dependence of reflectance varies as a

function of the sun-target-sensor geometry and is described

by the Bi-directional Reflectance Distribution Function

(BRDF) (units of sr�1). Methods have been developed to

model the BRDF with a limited number of parameters and

then to estimate the model parameters from a finite set of

remotely sensed observations (Lucht, 2004). The semi-

empirical RossThick-LiSparse reciprocal BRDF model is

used as it performs robustly in the global MODIS BRDF/

albedo product (Schaaf et al., 2002). Like other linear

kernel-driven models, it allows analytical model inversion

with an estimate of uncertainty in the model parameters and

linear combinations thereof (Lucht & Lewis, 2000; Lucht &

Roujean, 2000). It also implicitly models surface hetero-

geneity (assuming linear scaling of reflectance). Other

BRDF models may be used but we note that the

RossThick-LiSparse reciprocal model satisfies the general

algorithm requirement to predict reflectance under similar

MODIS sensing and illumination geometries (Roy et al.,

2002b). At each geolocated pixel, the three parameter

RossThick-LiSparse reciprocal BRDF model is inverted

against m�7 reflectance observations sensed in a temporal

window of n =16 days duration. These values are the same

as those used to compute the MODIS 16-day BRDF/albedo

product (Schaaf et al., 2002). A minimum of 7 observations



Fig. 4. (A) Russian Federation study region encompassing the Arctic Circle (Central Siberian Plateau in the West, Anadyr in the East). 10- meridians (from 90-

to 180- East) and parallels (60- and 70- North) are shown (white lines). The Lena River is evident running approximately North–South between longitudes

120- and 130- East. MODIS 500 m fire-affected areas mapped for 1 month are illustrated with a rainbow color scale to denote the approximate day of burning

from July 1st (violet) to July 31st (red), 2002. Extensive burning is evident to the West of the Lena River, near Yakutsk. The fire-affected areas are shown

superimposed on 500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and blue (0.469 Am) reflectance. Water bodies are colored

lilac. The black areas denote adjacent MODIS tiles not included in this 2-tile study region. See Fig. 16 for an enlarged view of a 450�250 km subset. (B)

Russian Federation study region (Kamchatka Peninsular in the East) including parts of NE China. Country borders (black lines) and 10- meridians (from 110-

to 160- East) and parallels (from 50- and 60- North) are shown (white lines). MODIS 500 m fire-affected areas mapped for 1 month are illustrated with a

rainbow color scale to denote the approximate day of burning from May 1st (violet) to May 31st (red), 2002. Extensive burning is evident to the East of the

Chinese border. Water bodies are colored lilac. The black areas denote adjacent MODIS tiles not included in this 2-tile study region.
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is used as this provides more than twice as many

observations as there are RossThick-LiSparse BRDF model

parameters and MODIS studies indicate that using fewer

observations provide unstable results (Gao et al., 2001). The

BRDF model parameters are used to compute predicted

reflectance and uncertainties for the viewing and illumina-

tion angles of a subsequent observation. A Z-score is used

as a normalized measure related to the probability of the

new observation belonging to the same set as that used in

the model inversion:

Zk ¼
qnew k;X;XVð Þ � q k;X;XVð Þ

e
ð1Þ

e ¼ e

ffiffiffiffi
1

w

r

where Zk is the Z-score value, qnew(k, X, XV) is the new

reflectance observation, q(k, X, VV) is the model predicted

reflectance at wavelength k computed by analytical inver-
sion of the BRDF model against m previous reflectance

observations, X and XV are the viewing and illumination

vectors respectively of the new reflectance observation, and

e is the model prediction error defined by the product of e,

the root mean squared of the residuals of the BRDF

inversion (used as an estimate of noise in the observations

and the lack of ability of the model to fit the measurements),

and w is the Fweight of determination_ of qnew(k, X, XV)
(Lucht & Lewis, 2000). Zk is adaptive to the viewing and

illumination angles of the new observation, as well as the

angular distribution, amount of noise, and number of the

observations used in the BRDF inversion (Roy et al.,

2002b).

The computation (1) is repeated, moving through the

reflectance time series in daily steps to detect change. This

is analogous to compositing the reflectance time series

with overlapping consecutive compositing periods to

ensure that change events that occur between periods are

captured (Roy et al., 1999). Rather than using training

data, thresholds defined by the noise characteristics of the

reflectance data and knowledge of the spectral behavior of
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burned vegetation are applied to the resulting Z-score time

series. Candidate change observations are those for

MODIS band 5 where |Z|�Zthresh and where Z is negative,

indicating a drop in post-fire band 5 reflectance. Only

candidates where band 5 minus band 7 decreases after

burning are considered to be burned. This is based on

observations that burning causes a reduction in band 5

reflectance but less change in band 7, whereas other non-

fire changes, such as flooding, have similar effects in both

bands (Roy et al., 2002b). A temporal constraint is used to

differentiate between temporary changes considered as

noise and fire-affected areas, which have persistently lower

post-fire band 5 reflectance.
5. Global algorithm: statistical thesholding

In the global algorithm, we use a more robust Z-score

definition that incorporates a fixed estimate of the noise in

the new observation:

Zk ¼
qnew k;X;XVð Þ � q k;X;XVð Þ

e
ð2Þ

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

k þ e2
1

w

r

where rk is a fixed pre-assigned estimate of the noise in

qnew(k, X, XV) that is assumed to be independent of the

error in the predicted reflectance q(k, X, XV) that is

estimated as before as e2(1 /w). We use conservative

estimates of rk defined by validation of MODIS land

surface reflectance data sensed under low aerosol con-

ditions (Vermote et al., 2002; Vermote, personal commu-

nication). The estimates are summarized in Table 1 for the

seven MODIS land surface reflective bands. The incorpo-

ration of rk reduces the incidence of overestimated Z-score

values that occur for (1) when the angular sampling of the

observations used in the BRDF inversion are similar to

that of the new observation (i.e., when the weight of

determination is high and 1 /w low). Incorporation of rk

also desensitizes the Z-score to large e values that occur

when observations used in the BRDF inversion are

contaminated by shadows or by residual cloud (when e

is a poor estimate of noise in the data). We note that

although large e may result in a reduced Z-score, this is

not guaranteed as q(k, X, XV) will also be unreliable. For

this reason, to ensure that grossly unreliable BRDF

inversion results are not used, inversions with e greater

than 5rk are discarded.
6. Global algorithm: multiple wavelengths

In the global algorithm, MODIS bands that are sensitive

and insensitive to biomass burning are used to detect
changes due to fire and to differentiate them from other

types of change, respectively. The near-infrared and longer

wavelength 500 m land reflectance bands (Table 1) are used

because they are generally insensitive to smoke aerosols

emitted from vegetation fires (Kaufman & Remer, 1994;

Miura et al., 1998). An analysis of the ability of the MODIS

land surface reflectance bands to discriminate between

recently burned and unburned vegetation is first described

followed by discussion of similar spectral changes that are

not caused by burning. This is followed by discussion of

how multiple MODIS bands are used in the global

algorithm.

6.1. Burned–unburned MODIS band separability analysis

The burned–unburned band separability approach

described by Roy et al. (2002b) is applied to a month of

MODIS data in each study region. In this approach the

MODIS 500 m land surface reflectance bands are

examined at locations where 1 km MODIS active fires

were detected. Only locations where at least three non-

cloudy, good quality, low or average aerosol surface

reflectance observations (MODIS land surface reflectance

user guide, WWW1) sensed in the n days occurring before

the active fire detection and in the n days occurring after

the fire detection are considered. The values observed in

the n days occurring before and after the active fire

detection are considered as unburned and burned respec-

tively and their separability is computed. The Bhattachar-

yya distance separability measure is used as it is bounded,

between values of 0 (no separability) and 2 (high

separability), and is monotonically related to classification

accuracy when probability distribution class models (e.g.,

maximum likelihood) are used (Fukunaga, 1990). In this

study, n is not greater than 10 days to reduce the impact of

any charcoal and ash dissipation or phenological vegeta-

tion changes. Observations sensed with a view zenith

greater than 45- are not used, as the surface area sensed by

the MODIS instantaneous field-of-view increases rapidly

above this zenith angle (Wolfe et al., 1998) and greater

directionality of surface reflectance at high zenith angles

may confuse the separability analysis. We note that using a

smaller view zenith angle threshold generally increases the

burned–unburned separability but at a cost of reducing the

number of available observations and so forcing us to set

n to a larger number of days, particularly in cloudy

regions.

6.1.1. Australia burned–unburned MODIS band

separability results

Fig. 5 shows meanT1 standard deviation summary

statistics of the unburned (top, open circles) and burned

(top, filled circles) reflectance values and the correspond-

ing Bhattacharyya distances (bottom) computed from more

than 11,000 MODIS 500 m pixels across the Australian

study region. MODIS reflectance data acquired 6 days
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Fig. 5. Australia study region burned–unburned MODIS band separability results. Top: unburned (open circles) and burned (filled circles) land surface

reflectance summary statistics for the seven MODIS reflective bands. Mean reflectance (circle superimposed on cross) and meanTone standard deviation

reflectance (circles without crosses) values are shown. Bottom: burned–unburned separability of the reflectance data for the seven MODIS land surface

reflectance bands. Data computed from a month of 2002 burned and unburned values at 11,119 500 m pixel locations across the study region. MODIS bands

shown in order of increasing wavelength (Table 1).
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before and 6 days after active fire detections are

considered. Burning reduces the mean land surface

reflectance in all MODIS land reflectance bands, except

band 7, although changes for bands 3, 4, 1, and 7 are

small. The band 6 unburned and burned reflectance data

are widely distributed which reduces the band 6 separa-

bility, despite the relatively larger drop in reflectance

compared to bands 4 and 1, which have comparable

separability values. MODIS bands 2 and 5 have the

highest separabilities (Bhattacharyya distance ¨0.29) and

the band 7 separability is low.

6.1.2. South America burned–unburned MODIS band

separability results

Fig. 6 shows the south American results computed from

725 MODIS 500 m pixels. Persistent cloud reduced the

number of available pixels so that MODIS reflectance data

acquired up to 10 days before and 10 days after the fire

detections are considered. Fig. 6 illustrates that burning

reduces the mean land surface reflectance for bands 2 and 5,

slightly reduces band 6 reflectance and increases the

reflectance for the other bands. Unlike the other study

regions, the band 6 separability is small (less than the band 7

separability). The physical reason for this is unknown,

although we note that the highest band separabilities, found

for bands 2 and 5, are themselves small (Bhattacharyya

distance ¨0.12). These low separabilities suggest that

mapping fire-affected areas with MODIS 500 m reflectance

data may be less successful here than in the other study
regions. This is discussed further in the Results section of

this paper (Section 10).

6.1.3. Russian Federation burned–unburned MODIS band

separability results

Fig. 7 shows results computed from 235 MODIS 500 m

pixels distributed across the Russian Federation study region.

MODIS reflectance data acquired 8 days before and 8 days

after active fire detections are considered. The results

illustrated in Fig. 7 are similar to those for Australia, with

low band 7 separability and the highest separabilities

provided by MODIS band 5 (Bhattacharyya distance ¨0.5)

and then bands 2 and 6. The separabilities and the reflectance

drop due to burning for bands 2, 5, and 6 are considerably

higher than for the other study regions. This is not unexpected

as boreal forest fires burn high fuel loads to generally leave

persistent and spectrally distinct fire-affected areas.

6.1.4. Southern Africa burned–unburned MODIS band

separability results

Southern Africa band separability results are described in

Roy et al. (2002b) from the analysis of MODIS land surface

reflectance data acquired 4 days before and after active fires

detected at approximately 15,000 pixels across the region.

For all bands burning reduced the mean land surface

reflectance, although for bands 1, 3, 4, and 7, the difference

between the mean unburned and burned reflectance values

was small compared to the standard deviations of these data.

MODIS band 5 provided the highest burned–unburned
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Fig. 6. South America study region burned–unburned MODIS band separability results. Top: unburned (open circles) and burned (filled circles) land surface

reflectance summary statistics for the seven MODIS reflective bands. Mean reflectance (circle superimposed on cross) and meanTone standard deviation

reflectance (circles without crosses) values are shown. Bottom: burned–unburned separability of the reflectance data for the seven MODIS land surface

reflectance bands. Data computed from a month of 2002 burned and unburned values at 725 500 m pixel locations across the study region.
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discrimination (Bhattacharyya distance ¨0.35) followed by

band 2 and band 6. MODIS band 7 provided little burned–

unburned discrimination. Similar observations have been
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surface reflectance bands. Data computed from a month of 2002 burned and unb
made by less extensive studies undertaken in southern
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6.2. Confusing spectral changes not associated with

biomass burning

Some surface changes not associated with biomass

burning may exhibit similar spectral changes as those

caused by fire. Depending on the algorithm and wave-

lengths used this may cause false detections (i.e., fire-

affected area commission errors). Potentially confusing

spectral changes may be inferred from examination of Fig.

8. This figure shows the mean reflectance of 25 cloud-free,

near-nadir 500 m MODIS pixels located in the four study

regions for a number of different surface types. The data are

illustrated in order of increasing wavelength to illustrate the

reflectance spectra of snow (light blue), evergreen tropical

forest (magenta), bright and dark soil (black solid and

dashed lines respectively), water (blue), and herbaceous

plants sensed on different dates at the same locations in

Australia (green lines) and similarly for grass in Zambia

(orange lines).

Most researchers note that burning decreases infrared

reflectance shortly after burning (Pereira et al., 1997), which

is apparent in our MODIS results illustrated for the different

study areas (Figs. 5–7) and for southern Africa (Roy et al.,

2002b). Examination of Fig. 8 indicates that decreases in

near-infrared and short wave infrared reflectance (MODIS

bands 2 and 5) similar to those caused by burning may also
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Fig. 8. Illustrative MODIS reflectance band spectra. Light blue: snow (Siberia, A

August 28th, 2002), black solid line: bright soil (Kalahari sand, northern Namibi

September 19th, 2002), green solid line: 100% cover herbaceous plants NDVI=0.8

plants NDVI=0.5 (April 20th, 2002) (both green lines illustrate the same locatio

senescent grass on bright Kalahari sand NDVI=0.4 (July 28th, 2002), orange das

2002) (both orange lines at the same location, Zambezi floodplain, Zambia), blue

bands shown in order of increasing wavelength (Table 1). Each point shows the me

MODIS pixels extracted from single date MODIS data sets over homogeneous s
occur with snow melt, vegetation removal exposing less

reflective soil (e.g., due to harvesting or pests), flooding,

and vegetation senescence. The Australian herbaceous plant

spectra (green) show a typical reduction in the near-infrared

(bands 2 and 5) and increase in red (band 1) reflectance as

the vegetation senesces from lush green vegetation to dried

material with 100% cover (personal communication, Grant

Allan, The Bushfire Council, Alice Springs, Australia). The

Zambian grass spectra (orange) show an opposite change

and are included to illustrate the complexity of potential

sources of spectral confusion. In the Zambia case, sen-

escence from green, waterlogged grass (dashed orange) to

dry grass on an exposed bright soil background (solid

orange) (personal communication, Joeseph Kanyanga,

Zambian Meterological Department, Lusaka, Zambia)

increases the near-infrared and the other MODIS band

reflectance. The Zambian example illustrates that increasing

plant water content (e.g., due to leaf flushing caused by a

sudden rainfall event) may reduce MODIS bands 5, 6, and 7

reflectance but have less impact on band 2 reflectance

(Fensholt & Sandholt, 2003; Zarco-Tejada et al., 2003).

Shadows, cast by clouds and surface relief, are not

illustrated in Fig. 8, but generally reduce reflectance in all

reflective bands (Holben & Justice, 1981) and so exhibit

similar spectral changes as those caused by fire (Roy et al.,

2002b).
nd 2 Band 5 Band 6 Band 7

pril 21st, 2002), magenta: evergreen tropical forest (Mato Grosso, Brazil,

a, July 8th, 2002), black dashed line: dark soil (Simpson Desert, Australia,

on dark soil (March 10th, 2002), green dashed line: 100% cover herbaceous

n, Barkly Tablelands, Northern Territory, Australia), orange solid line: dry

hed line: green grass on waterlogged Kalahari sand NDVI=0.8 (April 7th,

=water (Lake Argyle, western Australia, September 27th, 2002). MODIS

an surface reflectance of 25 cloud-free, near-nadir (view zenith<15-) 500 m

urfaces.
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6.3. Algorithm multi-band implementation

The results illustrated in Figs. 5–7 confirm more globally

the southern Africa findings of Roy et al. (2002b) that of the

seven MODIS land surface reflectance bands, MODIS

bands 5 and 2 provide the highest burned–unburned

discrimination and MODIS band 7 provides little discrim-

ination. They confirm that bands 5, 2, and 6 reflectance

decrease immediately, and for many days, after burning, and

that band 7 reflectance changes relatively less. This spectral

knowledge and knowledge of spectrally similar changes that

are not associated with burning are incorporated into the

global algorithm.

In the global algorithm, drops in both MODIS bands 2

and 5 surface reflectance are used, via (2), to detect

candidate changes associated with burning. Tests for these

two bands are combined using logical operators:

Zband 2 < � Zthresh or Zband 5 < � Zthreshð Þ ð3Þ

where Zband is the Z-score defined (2) and Zthresh is a fixed

wavelength independent threshold. Application of (3) with

increasing Zthresh decreases the number of detected burn

candidates. The addition of band 2 reduces algorithm

sensitivity to unmodeled noise and provides a way to

accommodate a bad MODIS Terra band 5 detector that

removes a 500 m band 5 scan line every 10 km. If band 5

data are not available due to a bad detector, then (3) is

implemented with respect to band 2 only. The Zthresh

threshold is the only spectral threshold used in the global

algorithm. A number of spectral constraints are also applied

to remove changes due to unmodeled noise and non-fire

related changes. These are described below.

The original algorithm labeled change candidates as

burned if band 5 minus band 7 decreased after burning. This

was implemented by comparing nadir bi-directional mod-

eled reflectances computed for these bands before and after

the change. In the global algorithm, this constraint is

implemented as (4) to remove the need to compute post-

change nadir bi-directional modeled reflectance, which may

not be possible if there are insufficient observations to invert

the BRDF model. In the global algorithm, we also add the

constraint that the difference between band 2 and band 7

must decrease:

q kband 5;X;XVð Þ � q kband 7;X;XVð Þ

> qnew kband 5;X;XVð Þ � qnew kband 7;X;XVð Þ ð4Þ

and

q kband 2;X;XVð Þ � q kband 7;X;XVð Þ

> qnew kband 2;X;XVð Þ � qnew kband 7;X;XVð Þ

where qnew(k, X, XV) is the new reflectance observation that

passed (3) and q(k, X, XV) is the model predicted

reflectance computed by inversion of the BRDF model

against m�7 previous reflectance observations. Addition of
band 2 reduces sensitivity to unmodeled noise. Addition of

band 2 also helps to remove changes associated with

increasing plant water content which is negatively related

to bands 5 and 7 reflectance but not band 2 reflectance

(Fensholt & Sandholt, 2003; Zarco-Tejada et al., 2003).

A new constraint is used to remove remaining non-fire

related changes that pass (3) and (4). Candidate burned

pixels are constrained to be only those where:

qprev
;;; kband 6;X;XVð Þ � qprev

;;; kband 7;X;XVð Þ
qprev
;;; kband 6;X;XVð Þ þ qprev

;;; kband 7;X;XVð Þ

>
qnew kband 6;X;XVð Þ � qnew kband 7;X;XVð Þ
qnew kband 6;X;XVð Þ þ qnew kband 7;X;XVð Þ ð5Þ

where qnew is the new reflectance observation that passed

(3) and (4), and qprev
;;;

is the median of the three preceding

reflectance observations in the time series. The median of

the three preceding reflectance observations, rather than

the preceding reflectance observation, is used in order to

reduce sensitivity to noise occurring in any single

preceding observation. A ratio spectral index (5) is used

rather than a constraint of the form (4) because shadows,

solar illumination, and topographic induced variations that

cause proportionally similar reflectance reductions in the

different MODIS bands will pass (4), whereas their impact

is largely reduced by using a ratio spectral index (Holben

& Justice, 1981). Constraint (5) also removes many of the

spectrally confusing non-fire related changes illustrated in

Fig. 8. This is because MODIS band 6 typically increases

when snow melts (Fig. 8, light blue line), vegetation

senescences (Fig. 8, green and orange lines), and when

certain types of vegetation are removed to reveal more

reflective underlying soil (Fig. 8 purple line). In addition,

this constraint takes advantage of the generally lower

MODIS band 7 reflectance of most surfaces compared to

band 6 (Figs. 5–8), whereas black ash has higher band 7

reflectance than band 6 (Pereira, 2003; Roy & Landmann,

in press). The spectral index is computed from the

observed rather than BRDF model predicted reflectances,

even though directional effects remain. This is because

post-fire reductions in band 6 reflectance can be small and,

in some cases, smaller than the root mean squared of the

residuals of the band 6 BRDF inversion. This sensitivity is

most problematic when attempting to detect small reflec-

tance changes. For example, occurring when only a

fraction of the MODIS observation burned and/or when

the fire had low combustion completeness (Roy &

Landmann, in press).

Flood events are mostly not falsely detected as fire-

affected areas because of the large drop that occurs in band

7 and their consequent removal by constraint (4). False

detections along land–water interfaces do occasionally

occur due to drops in the reflectance time series caused by

misregistration and view zenith variations (Roy, 2000). We

attempt to reduce these by applying a conservative water

test to remove pixels with MODIS band 7 reflectance less
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than 0.04 AND NDVI less than 0.1. The NDVI test is used

because dense green vegetation may have low band 7

reflectance (e.g., Fig. 8).

Finally, we note that (3)–(5) may fail to detect burns

where more reflective underlying surfaces (in bands 2, 5,

and 6) are exposed by the action of fire. For example, when

the fire occurs on highly reflective soil, snow, or understory,

and ash/charcoal dissipation by the elements is rapid.

Similarly, this may occur when the fires are sufficiently

hot to produce highly reflective white ash (Roy & Land-

mann, in press; Stronach & McNaughton, 1989). At the time

of writing, we have insufficient field data to study these

potential sources of omission error.
7. Global algorithm: temporal application

In the original algorithm description, it was noted that

reliability problems may occur when there are underlying

non-fire related changes and/or gaps in the reflectance time

series that reduce the ability to capture burning events (Roy

et al., 2002b). These issues are generally problematic for the

detection of changes associated with land-cover conversion

or modification processes (Coppin et al., 2004). To reduce

the impact of these issues, five algorithm modifications have

been implemented in the global algorithm. They capitalize

on the spectral persistence of fire-affected areas and are

described below.

7.1. Adaptive window duration

Gaps in the reflectance time series, for example due to

cloud cover or bad quality input data, reduce the temporal

frequency of Z-score calculations as they reduce the number

of windows with sufficient observations for BRDF inver-

sion. For example, Jin et al. (2003) considered the impact of

missing MODIS Terra time series data on BRDF inversion

and found that globally only 50% of MODIS land pixels

were observed 7 or more times under cloud-free conditions

over a 16-day period in September 2001.

To reduce the impact of gaps, the duration of the BRDF

inversion window is now allowed to increase in an adaptive

manner, from a minimum of n =16 days up to a maximum

of (n +nextra) days, until there are at least 7 observations.

When there are fewer than 7 observations, no inversion is

performed. In this way, by using an adaptive window

duration, more BRDF inversions may be performed in the

presence of missing data, providing more opportunities for

detecting burning events.

To investigate the global impact of different window

durations on obtaining sufficient observations for BRDF

inversion, we performed the following statistical analysis. In

this analysis, it is assumed that the probability of cloud

occurrence is constant within each (1200 km�1200 km)

MODIS tile and that there is no temporal correlation of

occurrence probability. If day i has a known probability of
being cloudy Pcloud(i) (the proportion of clouds on day i

within a given tile), then the probability of a particular

combination of k different non-cloudy days being selected

from n days is defined from the product of n probabilities

as:

PC jð Þ ¼
Y
iaA

1� Pcloud ið Þð Þ
Y
iaB

Pcloud ið Þ ð6Þ

where A is the set of k non-cloudy days and B is the set of

n –k cloudy days (with ASB). The probability of there

being k different non-cloudy days selected from n days is:

Pn
k ¼

XnCk

j¼1

PC jð Þ ð7Þ

where nCk is the total number of combinations ( n!
n�kð Þ!k!) that

k different days can be selected from n days. The probability

of there being 7 or more non-cloudy observations selected

from n days is then
Pn

k¼7 P
n
k .

We applied this approach with Pcloud(i) derived from

metadata values stored in the daily Terra MODIS land

products (Roy et al., 2002a) that define the fraction of land

pixels in each tile flagged as ‘‘cloudy’’ or ‘‘uncertain clear’’

by the MODIS cloud mask algorithm (Ackerman et al.,

1998). We derive, independently for each tile, summary

statistics on the probability of obtaining k or more non-

cloudy observations from an n-day window moved in daily

steps through a year of Pcloud(i) values. As cloud cover has

high temporal variability, we also derive the percentage of

windows over the year where the probability of obtaining

k or more non-cloudy observations is greater than a certain

probability.

Fig. 9 shows illustrative tile-level results computed for a

16-day window (left column) and a 32-day window (right

column) moved in daily steps through the 366 days of 2004.

The figure illustrates for each tile the mean annual

probability of obtaining 7 or more non-cloudy observations

(top row) and the percentage of windows over the year

where the probability of obtaining 7 or more non-cloudy

observations is greater than 0.9 (bottom row). The results

are shown for the 143 MODIS tiles that cover 25% or more

land pixels not including Antarctica. Evidently, increasing

the window duration increases the probability of there being

7 or more observations. Considering these tiles only, the

global mean annual probability of obtaining 7 or more non-

cloudy observations increases with window duration from

0.64 (n =16 days), 0.83 (n =24 days) to 0.91 (n =32 days).

Similarly, the global mean percentage of windows over the

year where the probability of obtaining 7 or more non-

cloudy observations is greater than 0.9 increases from

43.2% (n =16 days), 68.1% (n =24 days) to 82.5% (n =32

days). Regional variations are clearly evident, with a

reduced number of windows with 7 or more observations

in cloudy regions of equatorial West Africa, equatorial

South America, Southern and Southeast Asia, and in Boreal

regions of Eurasia and Canada.
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Fig. 9. Global analysis of the impact of increasing temporal window duration on the availability of 7 or more non-cloudy MODIS observations in a 16-day

window (left column) and a 32-day window (right column) moved in daily steps through 366 days of 2004. Top row: mean annual probability of obtaining

seven or more non-cloudy observations. Bottom row: percentage of windows over the year where the probability of obtaining seven or more non-cloudy

observations is greater than 0.9. Results illustrated for 143 MODIS land tiles that cover �25% land pixels (not including Antarctica). Each tile has fixed earth

locations covering an area of approximately 1200�1200 km (10-�10- at the equator).
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7.2. Multi-date prediction

Gaps in the reflectance time series also reduce the

number of observations available for prediction. To reduce

this impact, the Z-score is computed not just for the

subsequent day but for several subsequent days. This

multi-date prediction and the adaptive window approach

are illustrated in Fig. 10. At each window containing 7 or

more observations, the BRDF parameters are used to

compute Z-scores for the non-missing observations sensed
BRDF inversion window S
(

             n n extra≤

Fig. 10. Adaptive window duration and multi-date prediction illustrated for a hyp

pixel. The BRDF model is applied to a window containing at least seven observati

model parameters are used to compute Z-scores for Ssearch subsequent days startin

found, for the subsequent S test days starting from the first burn candidate.
on the following Ssearch days. If within the following Ssearch
days, a burn candidate is found, i.e., criteria (3)–(5) are met,

then the Z-scores continue to be computed for Stest days

after the first burn candidate.

Identification of the approximate date of burning is

constrained by the frequency and occurrence of missing

observations. To predetermine the precision of this date,

each observation in the search duration is considered only if

it occurs no more than Ngap days after the previous

observation. Similarly, the first observation in the search
Day

earch duration 
daily Z-score calculations)

 S search 

              S test 

         first burn candidate

othetical time series of daily reflectance observations at a single geolocated

ons over a duration of at least n and no more than n +nextra days. The BRDF

g from the first day after the inversion window and, if a burn candidate is
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duration is considered only if it occurs within Ngap days of

the last observation in the inversion window. In this way, the

date of fire occurrence is defined with a precision of Ngap

days.

The process illustrated in Fig. 10 is repeated moving

through the time series in daily steps. Z-scores may be

computed for an observation by up to Ssearch different

inversion windows. A data structure is used to store for each

non-missing observation its burn candidate status (i.e., if it

passed criteria (3)–(5) or not), the maximum of the band 2

and band 5 Z-scores (2), and the associated BRDF inversion

window.

7.3. Temporal consistency constraint

The algorithm is based on the assumption that the surface

state remains static. Non-random underlying changes, for

example, due to vegetation senescence, will cause the m

observations used in the BRDF model inversion to be of a

changing surface so that the BRDF prediction is less

reliable. This may be partly compensated via (2) because

the residuals of the m observations are increased, and so the

Z-score may be decreased, and because inversions with e

greater than 5rk are discarded as they are assumed to

provide grossly unreliable BRDF prediction. Underlying

changes may also cause the Z-scores of subsequent

observations to be correlated with the slope of the under-

lying change (Fig. 11). These issues may lead to false burn

candidate detection, depending on the slope of the under-

lying change and on the temporal frequency of any gaps that

increase the inversion window and search durations (Fig.

10). A temporal consistency constraint is implemented to

reduce the occurrence of these false detections.

The temporal consistency constraint takes advantage of

the overlapping sets of Z-score information calculated by

consecutive inversion windows. It is based on the principal

that, if a burn candidate is detected on a certain day by a
    

0 1 2 3

Window A 

Window B 

ρ

Fig. 11. Illustration of the temporal consistency constraint. A hypothetical non-fire

days after inversion window A are shown (circles). Observations with sufficiently

circles) for predictions from inversion window A (solid arrows) and from inversion

temporal consistency constraint flags burn candidates on days 4 and 5 as invalid (s

burn candidates as invalid.
given inversion window, then it should also be detected as a

burn candidate by a closer window. This is illustrated in Fig.

11. The constraint is implemented by sorting the different

burn candidates and the windows that considered them into

chronological order. Windows that occur more than the

search duration (Ssearch+Stest days) away from the candidate

(Fig. 10) and windows where there were insufficient

observations for BRDF inversion or with e greater than

5rk are not considered. For each burn candidate, the

preceding windows are considered in reverse chronological

order (i.e., in Fig. 11, window B is considered before

window A). If a preceding window failed to detect the burn

candidate within its search duration, then the Z-score results

for that burn candidate associated with that window and all

preceding windows are removed from consideration. Thus,

for each burn candidate, Z-score results are only retained for

the windows that consistently detected the candidate as

burned up to and including the preceding window. For

example, in Fig. 11, when considering burn candidates on

day 6 onwards the Z-scores for days 4 and 5 are rejected

because although they were detected as burn candidates by

window A, they were not detected as such by window B.

This method is attractive in that it does not use thresholds

and it requires no knowledge of the type of underlying

reflectance change. This constraint also reduces sensitivity

with respect to the results (3)–(5) provided by any single

inversion window.

In our prototyping, we have found that strict implemen-

tation of the temporal consistency constraint may lead to

rejection of fire-related changes. This is because cases occur

where observations sensed at the onset of a fire have small

reflectance change and so were not labeled as burned but the

subsequent observations of that location were labeled as

burned (presumably because subsequently the fire burned

the vegetation more completely or burned a greater area). In

addition, cases occur where the edge of a large fire-affected

area, or an area with a short-axis dimension smaller or
Day

4 5 6 7 8 9 10 11

reflectance change with constant slope is shown. Daily reflectance sensed 11

large Z-scores to be falsely labeled as burn candidates are illustrated (filled

window B (dashed arrows). Window B occurs 2 days after window A. The

ee text for details). Other windows (not illustrated) similarly flag subsequent
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comparable to the nadir observation dimension, may not be

detected at high view zenith angle (Roy, 2000). The

temporal consistency constraint is relaxed to accommodate

for these cases by allowing for at most one preceding

window to fail to detect a candidate as burned.

7.4. Temporal persistency ranking

A temporal persistency constraint was implemented in

the original algorithm to differentiate between fire-affected

areas and temporary changes, such as shadows, undetected

residual clouds, soil moisture changes, and data artifacts,

that are considered as noise. Similarly, in the global

algorithm, fire-affected pixels are selected from the burn

candidates that provide the most persistent evidence of fire

occurrence. This is undertaken by considering the Z-scores
Forward: Dayfirst

Backward:

Npas

Dayfirst Npas

Fig. 12. Example Dayfirst, Npass, and Nconsidered results for a 175�225 km area of e

results derived from 75 days of MODIS 500 m land surface reflectance data sensed

backward in time (bottom row) using the global algorithm and Z thresh=3.0, Ssearch
are rainbow color-coded to indicate the day of detected burning (blue=August 9th

insufficient observations to invert the BRDF model). Dayfirst is derived with an 8-d

(Npass) and the number of non-missing observations considered (Nconsidered) for S tes
4–6 days, yellow: 7–9 days, orange: 10–12 days, and red: 13–16 days.
computed by consecutive inversion windows in a way that

accommodates sensitivity to unmodeled noise and sensitiv-

ity to gaps in the time series.

For each inversion window (Fig. 10), the day that the

first burn candidate was detected (Dayfirst), the maximum of

its bands 2 and 5 Z-scores (Zfirst), and the total number of

observations over the subsequent Stest days that were

considered (Nconsidered) and detected as burned (Npass), are

derived. Different Dayfirst candidates may be detected

because of sensitivity of the adaptive window duration

and multi-date prediction to gaps in the time series. In

addition, the same geolocated pixel may burn on separate

dates. The results from the different inversion windows are

ranked with respect to Npass and then Nconsidered, to provide

results in order of the most evidence of persistent burning. If

there are results with equal Npass and Nconsidered values then
s  Nconsidered

s  Nconsidered

xtensive burning in northern Zambia (gridlines shown every 50 km). These

August 9th to October 23rd, 2002 searching forward in time (top row) and

=16 days, S test =16 days, n =16 days, and nextra=8 days. The Dayfirst values

, red=October 23rd, black no burns detected, white pixels where there were

ay precision (Ngap=8 days). The number of observations detected as burned

t=16 days after Dayfirst are colored as purple: 1–2 days, blue: 3 days, green:
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the one with the greatest |Zfirst| is ranked as more persistent.

These data are used in a final burn candidate selection

procedure described in Section 8.

7.5. Forward and backward change detection

Gaps in the reflectance time series may occur in a non-

random manner (for example, due to persistent cloud).

Searching both forwards and backwards in time allows burn

candidates to be detected in the Ssearch days preceding or

following periods of persistently missing data. This also

allows burn candidates to be detected in the first and last

Ssearch days of the time series. Results for the forward and

backward directions are derived independently. When

searching backwards in time, an increase in reflectance in

the appropriate MODIS bands is searched for rather than a

reflectance decrease. The backward direction results are

considered less reliable than the forward direction results as

the BRDF model inversion may have been applied to

changing post-fire reflectance (associated, for example, with

ash and charcoal dissipation and/or vegetation regrowth).

Fig. 12 illustrates Dayfirst, Npass, and Nconsidered values

derived in the forward and backward directions over a 75-

day period for an area of extensive burning in Zambia. The

values for the most persistent burn candidates (found by

ranking candidates with respect to Npass, Nconsidered, and

|Zfirst|) are illustrated. The Dayfirst results are colored with a

rainbow color scale to indicate the approximate day of

burning, with black to indicate no detected burning, and

white to show pixels where throughout the time series there

were insufficient observations to invert the BRDF model (in

this example, due to discarded water observations over Lake

Bangweulu). The spatio-temporal progression of burning is

clearly evident. The Dayfirst values in the forward and

backward directions are spatially and temporally coherent,

even though they were derived independently at each pixel.

Burns that were detected at the end (red) and at the

beginning (blue) of the 75-day period are only evident in the

forward and backward directions respectively because they

occurred in first and last Ssearch days of the time series. For

these burns, the corresponding Npass and Nconsidered values

are small because of the smaller number of observations

succeeding or preceding the burn in the forward and

backwards directions, respectively. The Npass and Nconsidered

values also depend on the frequency and occurrence of gaps

in the reflectance time series and the occurrence of the burn

candidate relative to the non-missing data.
8. Global algorithm: burn candidate selection

The global algorithm attempts to reduce errors of

commission by only selecting fire-affected pixels where

there are burn candidates that provide persistent evidence of

fire occurrence. As the measured persistence varies depend-

ing on gaps in the reflectance time series and the timing of
the fire relative to non-missing data, an iterative rather than

simple thresholding approach is used. Burn candidates

found in both the forward and backward directions are

considered.

First, fire-affected pixels are selected as occurring on

Dayfirst if:

Npass � 3 and Npass=Nconsidered

� �
� 0:5 ð8Þ

In this way, only candidates are selected where at least 3 and

50% of the observations considered over the subsequent

Stest days are detected as burned. If several burn candidates

are found at a given pixel, then they are considered in order

of decreasing evidence of persistent burning and the first

one that passes (8) is selected. If forward and backward

search results have equal persistence, then the forward

direction results are given precedence.

Second, rather than discard burn candidates that are

likely to be burned but do not pass (8) because of

insufficient observations, for example, in Fig. 12 several

burned pixels have Npass less than 3 (shown as purple), they

are considered using less restrictive criteria than (8) and an

iterative search method. This method is based on the

principal that there is increasing expectation of a burn

occurring in pixels neighboring confidently detected burns

(Graetz et al., 2003; Roy et al., 2002b). In this search

procedure, the burn candidates selected by (8) are consid-

ered seed pixels. Non-seed pixels where burn candidates

were detected that did not pass (8) are accepted as burned if

they have two or more adjacent seed neighbors and if:

=Dayfirst � Dayfirstseed
;;;;;;;

= < Ngap and Npass � 2 and

Npass=Nconsidered

� �
� 0:5 ð9Þ

where Dayfirst, Npass, and Nconsidered are the values for the

burn candidate that did not pass (8) and Dayfirstseed
;;;;;;;

is the

mean Dayfirst value of the two to eight adjacent seed pixels.

The Ngap constraint ensures that only burn candidates that

occur temporally as well as spatially close to the neighbor-

ing seed pixels are considered. This procedure is repeated in

an exhaustive iterative manner with the pixels that passed

(9) being considered as seeds for the next iteration until no

more burn candidates that pass (9) can be included. As with

(8), if several burn candidates are found at a given pixel,

then they are considered in order of decreasing evidence of

persistent burning until (9) is met. Again, if forward and

backward search results have equal persistence, then the

forward direction results are given precedence. Pixels where

throughout the time series there were insufficient observa-

tions to invert the BRDF model are labeled with a unique

code so that they are not subsequently mistaken as being

unburned (for example, shown as white in Fig. 1). The

temporal thresholds used in (8) and (9) may be varied for

regional application, but the ones described here are found

to work well for the four study areas using MODIS Terra

data.
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9. Global algorithm efficiency

The algorithm is computationally expensive compared to

conventional approaches. For example, detecting fire-

affected areas over a year requires the BRDF inversion

and search process (Fig. 10) to be repeated up to (365�n)

times for each MODIS land pixel (n is typically 16).

Globally, there are approximately 680 million 500 m

MODIS land pixels. Computational efficiencies are made

by efficient data handling and an efficient BRDF inversion

scheme. These are described briefly below.

Data handling efficiencies are made by processing the

data on a MODIS tile basis. For each tile, a row of 2400 500

m pixels of the time series input data are read and the

algorithm applied for each column within the row using

temporal buffers. For each pixel, the window is moved

forward through the time series once and the window BRDF

parameters are used to search for change in the forward and

backward directions rather than moving the window twice

through the time series in separate directions. For each

window, the tests (3)–(5) are implemented in a sequential

manner with no further computation performed if a burn

candidate fails a particular test.

Substantive computational savings are found by imple-

mentation of an efficient BRDF inversion scheme. The

RossThick-LiSparse reciprocal BRDF model describes the

bi-directional reflectance as a linear combination of three

kernels that are functions of viewing and illumination angles

only (Wanner et al., 1997) as:

qobs ¼
X3
i¼1

CiKið Þ þ e ð10Þ

where qobs is the observed surface spectral directional

reflectance, Ci is the weight for each of three kernels Ki (K1,

isotropic kernel; K2, geometric-optical kernel; K3, volumet-

ric kernel), and e is the observation noise. The kernel values

Ki are precomputed for the solar and illuminations angles of

each observation in the time series and stored in a look up

table rather than being recomputed for each inversion

window. Eq. (10) is inverted analytically against m

reflectance observations using the method of least squares

(Whittaker & Robinson, 1960) as:

C3�1 ¼ KT
3�mKm�3

� ��1
KT
3�mqobs

m�1 ð11Þ

Since the isotropic kernel K1K1, the solution C can be

written as an analytical expression of the following eight

terms:X
K2;

X
K3;

X
K2
2 ;

X
K2
3

� �
;
X

K2K3ð Þ;
X

qobs;X
qobsK2

� �
;
X

qobsK3

� �
ð12Þ

where A represents summation over m observations. Thus,

at each step of the moving window algorithm, these terms

are re-calculated by the addition of the observation that has

just entered the window and the subtraction of the
observation no longer in the window. In this more efficient

implementation, after the first window has been inverted,

subsequent windows may be inverted using elements

needed for (11) calculated using (m�2) /m fewer mathe-

matical operations. In practice, due to missing data, more

than one observation may be added or subtracting at

consecutive window locations reducing this computational

saving.
10. Illustrative results

Figs. 1–4 show a month or more of fire-affected areas

mapped using the global algorithm. The results exhibit a

seasonally expected distribution of burning that is partic-

ularly evident in Figs. 1 (southern Africa), 2 (Australia), and

4A (Russian Federation, Arctic Circle). The results were

generated with Zthresh=3.0, Ssearch=16 days, Stest =16 days,

n =16 days, nextra =8 days, and Ngap=8 days. These

parameter values provide reliable fire-affected area results

across the four study regions, although improvements can

be made locally by reducing the parameter values where

missing and/or noisy observations occur infrequently.

Setting Zthresh=3.0 detects only those reflectance changes

(3) that fall outside of the expected reflectance variation

modeled from previous values (the probability that Z <�3.0

is ¨0.0013). Reducing Zthresh below 3.0 decreases omission

errors but introduces proportionally greater commission

errors across the study regions. The reasons for this are

complex and are related to factors including the relative

degree of reflectance change post-fire and the spectral

persistence of this change, the frequency and occurrence of

gaps or noisy observations, the timing of the fire relative to

the non-missing data, and the adaptive window duration and

multi-date prediction parameters. The parameters Ssearch,

Stest, and n are set equal to the MODIS 16-day repeat cycle

(Wolfe et al., 2002) in an attempt to maximize variation in

the MODIS viewing geometry. This is desirable for reliable

BRDF model inversion although is not critical for reflec-

tance prediction under similar MODIS sensing and illumi-

nation geometries (Roy et al., 2002b). The nextra parameter

is set to 8 days to give a BRDF window duration of 16 to 24

days, which provides sufficient observations for BRDF

inversion over all but the most persistently cloudy parts of

the study regions. The Ngap parameter is set arbitrarily to 8

days to accommodate more than a week of persistently

missing observations and so that the date of burning is

derived with a precision of no worse than 8 days.

Figs. 13–16 illustrate spatial subsets of the study region

results shown in Figs. 1–4 at larger scale. Contemporaneous

MODIS 1 km day and night active fire detections are

illustrated for comparative purposes. These independently

derived fire products exhibit a similar, locally coherent,

spatio-temporal progression of burning. Generally, a high

correspondence is observed between the locations and dates

of the 500 m fire-affected area results and the cumulative 1



Fig. 13. Example southern Africa results showing a 450�250 km region encompassing the border between Angola and the Democratic Republic of Congo.

The colors illustrate 1.5 months of extensive burning from June 23rd (violet) to August 8th (red), 2002 detected by the 500 m MODIS fire-affected area product

(top) and the 1 km MODIS day and night active fire product (bottom). The MODIS fire-affected areas (top) are shown superimposed on 500 m MODIS nadir

bi-directional modeled red (0.645 Am), green (0.555 Am), and blue (0.469 Am) reflectance to provide geographic context (country borders shown black). See

Fig. 1 for equivalent continental results. Where the MODIS active fire detections (bottom) are black, no fires were detected (and the percentage of MODIS day

and night 1 km observations labelled as cloudy over the mapped period were �10%).
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km active fire detections. Product differences are evident

among the study regions and are described below. The

MODIS active fire product has errors of omission of

commission that are still being quantified globally (Mori-

sette et al., in press) and so this product intercomparison is

not a surrogate for validation.

The results for southern Africa (Fig. 13) and Australia

(Fig. 14) are similar in that substantially more fire-affected

areas are detected by the global fire-affected area algorithm

than by the cumulative day and night 1 km active fire

detections. The proportion of the illustrated areas that the

global algorithm labeled as burned are 35.7% for southern

Africa and 20.5% for Australia, approximately three times

greater than the proportion labeled as burned by the

cumulative active fire detections (9.1% and 6.6% for

southern Africa and Australia, respectively). In both
examples, fewer than 10% of the day and night MODIS

active fire observations were obscured by cloud. Conse-

quently, active fire under-detection may be attributed to

MODIS overpassing at times when the fires were not

actively burning and/or to the active fires being insuffi-

ciently hot or large for their detection (Justice et al., 2002b;

Giglio et al., 2003). The southern Africa results (Fig. 13)

include a minority of locations where active fires were

detected but no fire-affected areas were mapped. The

reasons for this are varied but include the occurrence of

small and/or low combustion completeness fires that caused

an insufficiently large change in reflectance (Roy &

Landmann, in press) for their detection by the fire-affected

area algorithm.

The south America results (Fig. 15) illustrate examples of

fire activity where there is relatively low and high forest



Fig. 14. Example Australian results showing a 450�250 km region of the Northern Territory. The colors illustrate 1 month of extensive burning from October

1st (violet) to October 31st (red), 2002 detected by the 500 m MODIS fire-affected area product (top) and the 1 km MODIS day and night active fire product

(bottom). The MODIS fire-affected areas (top) are shown superimposed on 500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and

blue (0.469 Am) reflectance to provide geographic context. See Fig. 2 for equivalent larger scale results. The MODIS active fires grey shades (bottom) illustrate

locations where no fires were detected and show the percentage of MODIS day and night 1 km observations labelled as cloudy by the MODIS active fire

product over the month (black=0–10%, grey=11–20%).
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cover. The low forest cover results in the Mato Grasso (Fig.

15, top) have similar total area burned differences between

the global algorithm and cumulative active fire detections as

the southern Africa and Australian results, with a greater

area labeled as burned by the global algorithm (5.5%) than

by the cumulative active fire detections (2.3%). This

contrasts to the high forest cover results in southern Para

(Fig. 15, bottom) where a greater area is labeled as burned

by the cumulative active fire detections (6.1%) than the

global algorithm (4.1%). We believe that the fire-affected

area algorithm may be under detecting fires within the forest

and along the forest boundaries because reflectance changes

are obscured by unburned overstorey vegetation (Alencar et

al., 2004). This and the apparently small and spatially

fragmented nature of many fire-affected areas (relative to

the MODIS 500 m nadir observation dimension) may
explain the low south America MODIS burned–unburned

separabilities illustrated in Fig. 6. We note that, where fire-

affected areas are mapped, their spatial correspondence with

the geographic detail evident in the background 500 m land

surface reflectance data appears to be higher than that

provided by the 1 km active fire product. Certainly, the

cumulative active fire detections will overestimate the fire-

affected area if the fires are smaller than the MODIS 1 km

observation dimension. Without higher spatial resolution

remote sensing or ground-based validation data it is difficult

to draw any definitive conclusions.

The Boreal forest results (Fig. 16) were derived under

more cloudy conditions than the other detailed study region

examples; in places up to 30% of the MODIS day and night

observations were obscured by cloud. This cloudiness

impacts both the active fire and fire-affected area products.



Fig. 15. Example South America results showing two 250�250 km regions in Brazil: Mato Grosso (including parts of Serra do Roncador and Planalto do

Mato Grosso) (top row) and Southern Para (bottom row). The colors illustrate 1 month of extensive burning from August 1st (violet) to August 31st (red), 2002

detected by the 500 m MODIS fire-affected area product (left column) and the 1 km MODIS day and night active fire product (right column). The MODIS fire-

affected areas (left column) are shown superimposed on 500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and blue (0.469 Am)

reflectance to provide geographic context. The Xingu River is colored lilac (bottom row). See Fig. 3 for equivalent larger scale results. The MODIS active fire

grey shades (right column) illustrate locations where no fires were detected and show the percentage of day and night 1 km observations labelled as cloudy by

the MODIS active fire product over the month (black=0–10%, grey=11–20%).
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The fire-affected area product generally depicts the large

fires in a more spatially cohesive manner than the

cumulative active fire detections. Similar total burned areas

are mapped by the global algorithm (5.5%) and the

cumulative active fire detections (6.1%), but their temporal

correspondence is not high. For example, the cluster of fire-

affected areas located to the West of longitude 129- E and
encompassing latitude 63- N are labeled as occurring at the

beginning of July (violet, Fig. 16, top) but were either not

detected or were detected approximately a week later by the

active fire product (green, Fig. 16, bottom). Locations where

no active fires were detected but fire-affected areas were

mapped near the beginning or the end of July may be

attributed to fire occurrence up to Ngap=8 days before or



Fig. 16. Example Russian Federation results showing a 450�250 km region near the river Lena. The colors illustrate 1 month of extensive burning from July

1st (violet) to July 31st (red), 2002 detected by the 500 m MODIS fire-affected area product (top) and the 1 km MODIS day and night active fire product

(bottom). The MODIS fire-affected areas (top) are shown superimposed on 500 m MODIS nadir bi-directional modeled red (0.645 Am), green (0.555 Am), and

blue (0.469 Am) reflectance to provide geographic context. See Fig. 4A for equivalent larger scale results. The MODIS active fire grey shades (bottom)

illustrate locations where no fires were detected and show the percentage of MODIS day and night 1 km observations labelled as cloudy by the MODIS active

fire product over the month (black=0–10%, dark grey=11–20%, light grey=21–30%). Rivers are shown as lilac.
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after July. Periods of persistent cloud reduce the ability of

the global algorithm to map precisely the date of fire

occurrence and clouds preclude active fire detection.

Missing active fire detections where fire-affected areas are

mapped in the middle of the month, for example, at

longitude 134- E and latitude 63.5- N, occur. This example,

and others evident in Figs. 13–16, illustrate that algorithms

that attempt to ‘‘grow’’ fire-affected areas using morpho-

logical operators (Serra, 1986) around the locations of active

fire detections may have systematic under-detection issues.
11. Conclusions

We have described in detail an improved algorithm

developed for systematic global mapping of fire-affected
areas using MODIS 500 m land surface reflectance time

series data. It is based on a bi-directional reflectance model-

based expectation change detection approach that does not

require training data or other sources of information,

including human intervention. We have improved on the

original algorithm (Roy et al., 2002b) by making the new

global algorithm (i) operate on multiple wavebands, (ii)

better differentiate between fires and other types of change,

(iii) use more robust temporal constraints, (iv) reduce

sensitivity to non-random underlying changes and gaps

and unmodeled noisy observations, and (v) use spatial

contextual information to capture the increased likelihood of

fire occurrence near confidently detected fire-affected areas.

These improvements serve to derive more robust measures

and to better propose the underlying cause of any detected

change. The algorithm is potentially applicable to the
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mapping of other land-cover conversion or modification

processes that are characterized by rapid reflectance change.

We have demonstrated the global algorithm’s performance

for different fire regimes with results that reveal a coherent

spatio-temporal mapping of fire-affected area. The results

indicate that the algorithm provides spatial and temporal fire

mapping information that complement the information

provided by MODIS 1 km active fire detections. The

algorithm appears to map the spatial extent of burning more

reliably then cumulative MODIS 1 km active fire detections,

although in dense topical forest this may not be the case.

The global fire-affected area algorithm detects the

approximate date of burning by locating the occurrence of

rapid changes in MODIS reflectance time series. Con-

sequently, unlike active fire detection approaches, the global

algorithm can map the location and approximate date of

burning for fires obscured by cloud or thick smoke, or that

were not burning, at the time of satellite overpass. The

algorithm cannot map fires however in periods of frequently

missing observations—when there were fewer than seven

observations occurring over several weeks. Preliminary

global cloud analysis indicate that persistent cloud-cover

may restrict MODIS fire-affected area mapping in parts of

equatorial West Africa, equatorial South America, Southern

and Southeast Asia, and Boreal regions in Eurasia and

Canada. Active fires may be detected in the few cloud-free

observations sensed in frequently cloudy periods. This

implies that active fire and fire-affected area products may

be used in conjunction to improve fire information depend-

ing on cloud conditions.

The global algorithm will be implemented in the

MODIS land production system as part of the standard

MODIS land product suite (Justice et al., 2002a) to

systematically map fire-affected areas globally for the 6+-

year MODIS observation record. The resulting 500 m

product will map the approximate day of burning and will

be made available on a monthly basis. A comprehensive

program of validation is under development and interna-

tional collaborations are being made with regional networks

of fire scientists and product users through the GOFC/

GOLD program and the CEOS Land Product Validation

Working group (Justice et al., 2003; Morisette et al., 2002).

A prototype validation protocol has been developed using

multi-date Landsat ETM+ data (Roy et al., in press) and

validation results for southern Africa and Australia are

described in separate papers in preparation. The global

algorithm may be enhanced further based on the results of

these validation initiatives or if the performance of the

MODIS instrument changes. The temporal threshold values

used to generate the results presented in this paper may be

modified to accommodate regional differences in cloud

cover. Additional lines of enquiry are also being inves-

tigated, including definition of the algorithm detection

limits with respect to factors including the size of the area

burned and the completeness of combustion (Roy &

Landmann, in press) and the utility of multi-temporal
BRDF models that explicitly model surface dynamics

(Rebelo et al., 2004).

The bi-directional reflectance model-based expectation

change detection algorithm provides a route for the use of

multiple data sources and observations of varying degrees

of uncertainty within a modeling framework. Early results

using both MODIS Aqua and MODIS Terra data

demonstrate improvements in fire-affected area mapping

realized by incorporating additional angular observations to

better constrain the BRDF retrieval and improve cloud-free

observation of the surface. The algorithm is applicable to

data from other sensors, including future operational

sensors such as the National Polar-orbiting Operational

Environmental Satellite System (NPOESS) Visible Infrared

Imaging Radiometer Suite (VIIRS) which will extend the

MODIS data record into the next decade (Townshend &

Justice, 2002).
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