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Abstract. Wildfire ignition requires a combination of an open spark, and suitable weather and fuel conditions.Models of
fire occurrence and burned area provide a good understanding of the physical and climatic factors that constrain and
promote fire spread and recurrence, but information on how humans influence ignition patterns is still lacking at a scale

compatible with integrated fire management.We investigated the relative importance of the physical, climatic and human
factors regulating ignition probability across Southern California’s National Forests. A 30-year exploratory analysis of
one-way relationships indicated that distance to a road, distance to housing and topographic slope were the major

determinants of ignition frequency. We used logistic and Poisson regression analyses to model ignition occurrence and
frequency as a function of the dominant covariates. The resulting models explained ,70% of the spatial variability in
ignition likelihood and 45% of the variability in ignition frequency. In turn, predicted ignition probability contributed to

some of the spatial variability in burned area, particularly for summer fires. These models may enable estimates of fire
ignition risk for the broader domain of Southern California and how this risk may change with future population and
housing development. Our spatially explicit predictions may also be useful for strategic fire management in the region.
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Introduction

Wildland fire regimes in Southern California are influenced by
climate, ecosystem properties, the rate of human-caused ignition

and fire suppression. More than 90% of the fires in Southern
California are human ignited and rapid response often extin-
guishes ignitions that could otherwise become large wildfires

(Keeley 1982). Previous studies have reported that the fre-
quency of small fires in coastal Southern California increased
during the late 20th century (Keeley et al. 1999). Increasing

population size and an expansion of housing into fire-prone
wildland areas (Hammer et al. 2007) has increased ignition risk
(Keeley and Fotheringham2001), andwhen coupledwith severe

fire weather (e.g. Santa Ana winds), has resulted in several
recent catastrophic fire episodes (Keeley et al. 2009). Most
ignitions lead to small fires with relatively insignificant effects
(Strauss et al. 1989). Approximately 90% of fire ignitions

accounted for only 1%of the total area burned between 1980 and
2010 in Southern California, whereas only 3% of ignitions led to
fires larger than 400 ha and accounted for 96% of area burned

during this period (USDA Forest Service 2010). A combination
of altered ignition frequencies, changing climate and expansion
of housing near wildland areas hasmodified fire risk in Southern

California and presents a serious threat to human lives and
property (Syphard et al. 2012, 2013).

Landscape-scale disturbances such as fire contribute to
the distribution of vegetation and habitats across California
(Callaway and Davis 1993). Fire is a natural process whose

occurrence and magnitude are regulated by environmental and
ignition agents. A location’s fire environment, as determined by
fuel, weather and topography, affects the occurrence and spread

of fire (Countryman 1972). Topographic factors such as eleva-
tion, slope and aspect influence fuel characteristics including
moisture content, and thus indirectly control fire occurrence and

behaviour (Agee 1993; Pyne et al. 1996). Under normal weather
conditions, the propensity to burn is fuel dependent and is
controlled by the amount, arrangement and physical character-

istics of vegetation (Whelan 1995). Extreme weather, including
strong winds or extended periods with low humidity, over-ride
this fuel dependency and dramatically increase fire risk in
Southern California (Keeley and Zedler 2009; Moritz et al.

2010; Jin et al. 2014). Weather and climate, especially precipi-
tation and temperature, affect moisture content and thus the
flammability of both live and dead plant material (Verdú et al.

2012). Wind speed, relative humidity and air temperature
control fire spread rate and direction, and thus possible future
changes in weather and climate have the potential to modify

wildfire risk (Cayan et al. 2008). Climatemodels predict a hotter
and drier climate throughout California by the mid to late 21st
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century (Cayan et al. 2010; Pan et al. 2011) and recent studies
have concluded that warmer temperatures are likely to increase
the duration and intensity of the wildfire season (Westerling

2006; Westerling and Bryant 2008).
Existing models have emphasised the hydro-climate and

biophysical controls on fire (Bradstock et al. 1998; Preisler

et al. 2004; Spracklen et al. 2009; Westerling et al. 2009), and
there is a growing understanding of the relationship between
humans and ignitions patterns (Syphard et al. 2008; Bar Massada

et al. 2009; Narayanaraj and Wimberly 2012). Southern
California has an extensive wildland–urban interface (WUI),
which accounts for nearly 60% of the landscape (Hammer et al.
2007). Humans influence fire in several ways, including igni-

tion, landscape fragmentation and fire suppression; this com-
plexity complicates efforts to predict fire risk (Perry 1998).
Information on the relative importance of human v. environ-

mental factors is currently inadequate for Southern California’s
wildland fires (Pyne 2001; Haight et al. 2004). Studies have
reached a variety of divergent conclusions (Heyerdahl et al.

2001; Keeley and Fotheringham 2001; Moritz 2003; Dickson
et al. 2006), probably due in part to variation in fire character-
istics at different temporal and spatial scales (Moritz et al. 2005;

Parisien and Moritz 2009; Jin et al. 2014). Understanding the
spatial distribution of ignition and the relative importance of
human v. landscape controls, will become increasingly impor-
tant as climate changes, theWUI expands and human influences

on fire regimes increase (Sugihara et al. 2006; Westerling and
Bryant 2008).

Recent county-level studies in California found that ignition

frequency is significantly related to population density, with the
highest number of fires observed at intermediate levels of
population density and intermediate distances from the WUI

(Syphard et al. 2007). Syphard et al. (2008) analysed the spatial
patterns of fire ignitions in the Santa Monica Mountains and
found that ignition occurrence is correlated with distance to
human infrastructure (i.e. to roads, trails or housing develop-

ment) and slope and vegetation type, whereas fire return interval
is explainedmainly by biophysical aspects related to climate and
terrain (i.e. temperature, aspect, elevation and slope).

Further research is needed to quantify how human-related
variables and biophysical drivers constrain wildland fire at fine
spatial resolutions and over larger regional domains. We per-

formed a spatial regression of a 30-year dataset of fire ignitions
using human and biophysical explanatory variables. Our speci-
fic goals were to (i) assess the relative importance of possible

drivers (e.g. distance to roads or population density) on ignition
occurrence and frequency, (ii) develop statistical models of the
spatial distribution of ignition occurrence and frequency, and
(iii) quantify howmuch of the spatial pattern of fire return times

can be explained by spatial variation in ignition. Strategic fuel
management requires a better understanding of how landscape
characteristics explain the likelihood of wildfires (Dellasala

et al. 2004). Our results are intended to provide information
that will help local fire management agencies identify and
quantify ignition risk; this information may prove useful for

optimising fire suppression resources or prevention planning.
Our results also carry ecological implications for the manage-
ment of natural resources and protection of wildland ecosystems
(Haidinger and Keeley 1993).

Data and methods

Study area

Our main study domain covers 23 500 km2 of wildland areas
within USA National Forests in Santa Barbara, Ventura, Los
Angeles, San Bernardino, Orange, Riverside and San Diego

counties. The United States Forest Service (USFS) has used the
administrative boundaries of National Forests as the spatial
template for recording fire ignition locations. We therefore used

this layout to develop our model, focusing on the Los Padres,
Angeles, San Bernardino and Cleveland National Forests
(Fig. 1). Southern California experiences a Mediterranean cli-

mate with a long, dry summer and a relatively short and mild
rainy season (Bailey 1966). Contrasting patterns of temperature
and rainfall lead to a diverse range of vegetation associations

(Franklin 1998). Particularly widespread vegetation types
include chaparral, open oakwoodland, coastal sage scrub, valley
grassland, oak woodland and coniferous forest (Di Castri et al.
1981; Arroyo et al. 1995; Davis and Richardson 1995). The

region experiences intense human pressure: over 22 million
people lived in Southern California in 2010 and an extensive
road network connects numerous communities (source: US

CensusBureau 2012). California has,8500miles (,13700 km)
of state and federal highways and the average road density
within the National Forests in 2000 was ,1.3 kmkm�2 (US

Census Bureau 2000).

Datasets: fire ignitions and fire perimeters

We extracted the ignition records for 1980–2009 from the USFS

FIRESTAT database of individual fire incident reports (USDA
Forest Service 2010). This period overlapped with the avail-
ability of information on human and biophysical factors andwas

chosen because earlier records were less reliable for ignition
location and date. The location of fire origin was only specified
to within ,0.8 km for some fires. This resulted in an artificial
clustering of ignitions at ,1.6-km intervals in some areas.

Given this uncertainty, we opted to carry out our analysis at a
3� 3-km resolution. This resolution was chosen as a trade-off
between higher resolution grids where ignition location error

had a larger effect and lower resolution grids where the loss of
spatial information reduced the usefulness of model predictions
for management applications. Grids of varying sizes, from 1 to

5 km, were tested in preliminary sensitivity analyses: the 3-km
resolution yielded a large continuous range of ignition fre-
quencies, which aided model development. A Mantel test con-

firmed there was no evidence of spatial autocorrelation at 3-km
resolution (r¼�0.065, P. 0.05). We added a 5-km external
buffer to account for ignitions near the National Forest bound-
aries. We further reduced the noise in the data by excluding

ignitions that initiated fires less than 0.1 acres (,400m2).
ArcGIS desktop computer software (ArcGIS Desktop, Envi-
ronmental System Research Institute, Redlands, CA) was used

for all digital map analyses.
In a final step we compared our ignition estimates with the

observed spatial patterns of fire frequency to quantify the role of

ignition frequency in explaining the local fire return interval.
We computed a fire frequency map using historical perimeter
data for fires larger than 100 acres (,0.4 km2) compiled by
the California Department of Forestry and Fire Protection’s Fire
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Resource Assessment Program (FRAP 2010). We calculated
fire frequency in each 3� 3-km grid cell (i.e. number of fires

during the 1980–2009 period per square kilometre), weighting
each fire within a grid cell by its fractional burned area. We also
classified these burns into Santa Ana and non-Santa Ana fires

based on the fire start date reported in the FRAP (2010) database
and the time series of Santa Ana days, following the approach
described by Jin et al. (2014). Santa Ana days were identified
when the north-easterly component of the daily mean wind

speed was greater than 6m s�1 at the exit of the largest gap
across the Santa Monica Mountains (Hughes and Hall 2010).

Datasets: human factors

Recent studies identified numerous predictors of the occurrence
of ignitions in densely populated areas (Syphard et al. 2008;
Catry et al. 2009; Martı́nez et al. 2009). Fire ignitions recorded

over the last three decades tend to be clustered around trans-
portation networks and near urban areas. We therefore consid-
ered five variables to describe the human footprint: (1) distance

to a major road, (2) distance to a minor road, (3) road density,
(4) distance to low-density housing and (5) population density.

We used the US Census Bureau’s TIGER road data (Topo-
logically Integrated Geographic Encoding and Referencing;

US Census Bureau 2000) to estimate the road density per grid
cell and the distance from cell centroid to nearest road. High-
ways and state roads were classified as major roads (Fig. 2a),

whereas streets and vehicle trails were classified as minor

roads. This differentiation helped account for traffic volume
as a controller of ignition.

We computed average housing density for 1980–2009 based
on 1990 and 2000 US Census data (Hammer et al. 2004, 2007)
(Fig. 2b). The WUI is often defined as areas with less than 50%

vegetation and at least one house per 40 acres (6.2 houses km�2)
that are located within 1.5miles (,2.4 km) of an area over
500 ha that is more than 75% vegetated (Stewart et al. 2007).
Assuming that ignitions most likely occur close to or within

interface and intermix communities (Syphard et al. 2007, 2008),
we used the distance to the nearest housing area with a density
greater than 6.2 housing units km�2 as an indicator of the

proximity to the WUI (Fig. 2b). In addition, we used the WUI
vector maps created by the USFS (Radeloff et al. 2005) to
calculate the number of ignitions within and outside the WUI

areas.
Finally, we used the best available, fine-grained spatial

database on population demographics from the US Census
Bureau’s block group data for 2000 (US Census Bureau 2001)

to compute average population density per grid cell (Fig. 2c).
This variable captured the direct influence of human presence
within and outside the National Forest boundaries. All human

variables were summarised at 3-km resolution.

Datasets: biophysical factors

We considered ten variables that were related to topography,

land cover and climate: elevation, slope, south-westness, forest

120�W 119�W 118�W 117�W 116�W

35�N

34�N

33�N

Fig. 1. Study area in Southern California, USA. The broader domain encompasses seven counties (white lines). All ignition incidents

(red dots) recorded within National Forests boundaries (black dotted lines; major model domain) during 1980–2009 were overlaid on a

30-m-resolution Landsat satellite image mosaic (source: ESRI World Imagery database, November 2012).
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cover, shrubland cover, grassland cover, cover of other land

cover types, annual average daily maximum temperature,
annual average daily minimum temperature, and cumulative
winter precipitation. We used the 3-arc-second digital elevation

model from the US Geological Survey National Elevation
Dataset (NED) to calculate the slope and aspect for each
3� 3-km grid cell using ArcGIS software (Gesch et al. 2002)

(Fig. 2d ). Aspect was transformed trigonometrically to a south-
facing index referred to as ‘south-westness’ (cos(aspect – 2258))

following Beers et al. (1966). This index provided a measure of

sun exposure and dryness within each grid cell. Flat terrain with
a slope of less than 58 was excluded from the aspect analyses.
We assessed vegetation characteristics using themost recent and

comprehensive land cover dataset at 100-m resolution from
FRAP (2002). We classified the vegetation in the National
Forests into three major types: ‘shrubland’ (60% of the area),

‘forest/woodland’ (22%) and ‘grassland’ (6%). The remaining
non-vegetated land cover types were grouped as ‘other’, and

Highways and state roads
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(residents km�2)

Land use – Land cover

Agriculture
Barren or other
Desert
Hardwood–conifer forest
Grassland
Shrubland
Urban
Water–wetland
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1000–10 000

0 25 50 100 km
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(units km�2)

Elevation (m)

�75–0
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Fig. 2. Spatial maps of key human, topographic and biophysical drivers, including (a) major roads, (b) housing density, (c) population density,

(d ) elevation, (e) land cover and ( f ) mean annual winter (September–March) precipitation.
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included agricultural land, urban, desert, wetland, water and
barren (Fig. 2e). We calculated the fraction of each class within
each 3� 3-km grid cell. The monthly averages of precipitation

and daily maximum andminimum temperature were taken from
the gridded Parameter-Elevation Regressions on Independent
Slopes Model (PRISM) dataset at 800-m resolution (Daly et al.

2002). In our analysis we summarised winter precipitation
(September–March; Fig. 2f ), and annual mean maximum and
minimum temperatures for each 3� 3-km cell over the 1981–
2009 period.

Model building: logistic and Poisson regressions

Our input dataset consisted of the 15 explanatory variables
described above, which were spatially averaged within each
3� 3-kmgrid cell (Fig. 3).We sought to determine the influence

of those predictors on two dependent variables: (i) the occur-
rence of ignition (presence or absence within a cell) and (ii) the
frequency of ignition (number of ignitions within a cell).

We used a logistic regression approach tomodel the presence

or absence of ignitions (Kleinbaum et al. 2002; Hosmer and
Lemeshow 2005). Logistic regression has been used to success-
fully model the probability of fire occurrence at a range of

geographic scales (Chou et al. 1993; Chuvieco et al. 1999;
Vasconcelos et al. 2001). Logistic regression is expressed as:

logitðpiÞ ¼ ln
pi

1� pi

� �
¼ a0 þ b1�x1i þ . . .þ bj�xji ð1Þ

where pi is the probability of an ignition in the cell i and xji is the
value of the jth predictor in the cell i. The underlying distribution
is binomial and the logit function is defined as the natural

logarithm (ln) of the probability of ignition occurrence.
We found exponential relationships between the explanatory

variables and the number of ignitions (Fig. 4) and thus used a

Poisson regression model (Agresti 2002) for ignition frequency
expressed as:

logðyÞ ¼ a0 þ b1�x1i þ . . .þ bj�xji ð2Þ

Poisson models provide several advantages including the

ability to represent a skewed distribution and the restriction of
predicted values to non-negative numbers (Gardner et al. 1995).
The Poisson probability distribution of observing any specific

count y for an outcome Y and where ı̀ describes the average rate
of ignitions is given by:

PrðY ¼ yÞ ¼ �iye��i

y!
ð3Þ

Model building: variable selection and model validation

We sought to identify which variables were most important for
controlling the spatial distribution of ignitions, independent of

their interaction with other explanatory variables. We first
examined the correlation matrix among explanatory variables

117�40�W 117�30�W 117�20�W 117�10�W

34�20�N

34�15�N

34�10�N

San Bernardino

Legend

Housing density (units km�2)
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National forest boundaries
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Minor roads
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Fig. 3. The distribution of ignitions, roads and housing in the San Bernardino National Forest. This subset of the study area shows the

3� 3-km grid framework used to summarise ignitions data and associated predictors. Observed ignitions (red triangles) between 1980

and 2009 were overlaid on GIS layers for roads, housing density and land cover types.
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for high pairwise correlations (Table 1) and then performed
univariate logistic and Poisson regressions for all predictors
using the R statistical package (R Development Core Team
2012; Table 2). We then developed logistic and Poisson

multiple regression models that included all significant terms
(P, 0.001) based on the univariate regression analyses. The
original sample of 2625 grid cells (1483 with fire ignitions) was

randomly split into fitting and validation subsamples (70 : 30
ratio). We sequentially selected the variables using a backward
stepwise selection procedure (R packageMASS; Crawley 2005)

based on the Akaike Information Criterion (AIC; Akaike 1974).
The backward selection process started with the full model and
sequentially excluded explanatory variables based initially on
the correlation with the response variable and other explanatory

variables. We quantified the relative importance of retained

variables by estimating their percentage contribution to the
model goodness of fit (i.e. maximised log-likelihood).

Our goal was to develop simplified logistic and Poisson

models, with a reduced set of explanatory variables as a
compromise between model fit and model complexity. Logistic
nested models were compared and examined using inferential

and descriptive statistics. We used the likelihood ratio test and
the Wald statistic to assess overall model fit and the respective
contribution of individual predictors to fitted models. Receiver

operating characteristic (ROC) analysis was performed to quan-
tify the area under the curve (AUC) – ameasure of the predictive
capability of the logistic model to identify cells that had an
ignition event.We also used the ROC curve to select the optimal

threshold probability or cut-off value for the probability that
an ignition would occur in a given cell. Using the validation
samples we cross-validated the best multiple regression model

and built contingency tables of observed and expected responses
to evaluate model accuracy, precision, sensitivity and specific-
ity (Hilbe 2009). As with the multiple logistic regression, we

tested the significance of nested Poisson models and the signifi-
cance of individual parameters using the likelihood ratio test and
the Wald statistic. We also calculated Pearson’s correlation

coefficients for validation samples between observed and pre-
dicted values to assess model goodness of fit.

Model building: performance improvement

Poisson regression is a form of generalised linear models that
assumes the conditional variance to equal the conditional mean.
Therefore, a Poisson model is usually too restrictive when

predicting count data, which manifests as data over-dispersion
(i.e. the variance exceeds the mean) or as estimates of consid-
erably fewer zero counts than are actually observed in the

sample (Long 1997). As an alternative approach to Poisson
regression, we tested a negative binomial (NB) regression
(Agresti 2002; Gelman and Hill 2007; Hardin and Hilbe 2007),
which uses a dispersion parameter j to handle the variance

independent of the mean.
Based on their respective contributions to model fit, we

restricted the number of predictors to a subset of four explana-

tory variables while ensuring model performance was not
significantly altered. We compared the performance of Poisson
and NB models to ordinary linear regression, using Pearson’s

correlation coefficients, the rootmean square error (RMSE), and
the percentage of bias between simulated and observed data.
We estimated how the four main predictors influenced

model performance by comparing the nested models to the
4-parameters final model.

Predictive ignition frequency mapping

We applied the resulting NB model to estimate the ignition
frequency for all 3� 3-km grids within the National Forest

boundaries, and analysed the spatial distribution of the residual
ignition frequency. We used the Pearson correlation coefficient
to estimate how much of the spatial variability in fire frequency
derived from FRAP fire perimeter data was explained by the

predicted variability of ignitions within National Forest
boundaries. We also separately considered Santa Ana and non-
Santa Ana fires following Jin et al. (2014) to compare the

controls of ignition patterns on fire frequency for both fire types.
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Fig. 4a was computed by averaging the distance between each ignition

location (FIRESTAT dataset) and the nearest human infrastructure within

each 3� 3-km grid.
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Results

Spatial distribution of fire ignitions

Most of the wildland fire ignitions in the National Forests during
1980–2009 occurred nearmajor roads and close to urban housing
(Figs 1–3). Ignition pointswere clustered around populated areas,
major infrastructure and highways, implying a strong influence

by human factors (Fig. 3). The WUI, defined as areas where
housing meets or intermingles with undeveloped wildlands
(Stewart et al. 2007), had particularly high ignition densities

(i.e. near the border of National Forests in Los Angeles, San

Bernardino and Orange counties; Figs 1–3). Ignitions were much
less frequent in sparsely populated areas such as Santa Barbara
and Ventura counties (Fig. 1). The WUI covered only 5% of

National Forest area but accounted for 40% of ignitions. Ignition
density was considerably higher within the WUI (0.6 ignitions
km�2) than in more remote areas (0.03 ignitions km�2).

A quantitative analysis of the relationship between ignition
density and human variables confirmed that ignitions were most

Table 1. Correlations among the 15 explanatory variables used in the analysis

The table indicates the Pearson’s correlations between all independent variables. Please refer to the main text for more information on individual variables.

Interactions with significant correlations (P, 0.001) superior to 0.5 (inferior to �0.5 for negative correlations) are indicated in bold

d.MajR

0.54 d.minR

0.38 0.36 d.Housing

�0.42 �0.43 �0.36 Droad

�0.22 �0.18 �0.22 0.8 Dpopulation

0.18 0.26 0.14 �0.33 �0.28 elevation

0.33 0.43 0.1 �0.49 �0.28 0.41 slope

0.03 0.07 0.15 �0.09 �0.15 0.16 0.01 south-westness

0.11 0.11 0.1 �0.19 �0.16 0.66 0.27 0.12 tree

0.25 0.19 0.13 �0.42 �0.31 �0.16 0.31 �0.19 20.50 shrub

�0.18 �0.18 0.13 0.06 �0.03 �0.24 �0.36 �0.02 �0.12 �0.15 grass

�0.32 �0.25 �0.31 0.66 0.52 �0.32 �0.46 0.13 �0.29 20.60 �0.02 other

�0.16 �0.16 �0.25 0.25 0.25 20.81 �0.11 �0.16 20.63 0.26 0.05 0.25 Tmin

�0.18 �0.25 �0.14 0.31 0.21 20.85 �0.44 �0.11 20.67 0.16 0.17 0.38 0.69 Tmax

0.26 0.34 0.1 �0.23 �0.09 0.34 0.58 �0.12 0.28 0.22 �0.18 �0.45 �0.16 20.51 Prec

Table 2. Univariate logistic and Poisson regression results for all variables influencing the occurrence and frequency of fire ignitions in Southern

California National Forests

Values and direction (i.e. positive or negative) of the coefficients indicate the influence of covariates (the driver variables) towards the response variables

(ignition occurrence or frequency)

Explanatory variable Fire occurrence (Logistic model) Fire frequency (Poisson model)

Binary response variable Continuous response variable

Coefficient P-value Coefficient P-value

Human accessibility

Distance to major roads (km) �0.11� 0.010 ,0.0001 �0.15� 0.005 ,0.0001

Distance to minor roads (km) �0.32� 0.040 ,0.0001 �0.41� 0.020 ,0.0001

Distance to housing (km) �0.05� 0.005 ,0.0001 �0.07� 0.003 ,0.0001

Urban development

Population density (1000 persons km�2) �0.007� 0.004 0.09 0.004� 0.001 ,0.01

Road density (km roads km�2) 0.006� 0.002 ,0.05 0.017� 0.001 ,0.0001

Topography

Elevation (m) 0.44� 0.090 ,0.0001 0.01� 0.003 ,0.001

Slope (%) 0.007� 0.004 0.08 0.004� 0.001 ,0.001

South-westness (0–1) �0.14� 0.120 0.225 �0.07� 0.04 ,0.05

Land cover types

Tree (%) 0.67� 0.19 ,0.0001 0.3� 0.06 0.629

Shrub (%) 0.11� 0.14 0.436 0.12� 0.04 ,0.05

Grass (%) �1.97� 0.42 ,0.0001 �1.46� 0.18 ,0.001

Others (%) �0.42� 0.17 ,0.05 0.19� 0.06 ,0.001

Climate

Temperature maximum (8C) �0.03� 0.01 ,0.05 0.02� 0.006 ,0.001

Temperature minimum (8C) �0.04� 0.02 ,0.05 0.04� 0.006 ,0.001

Winter precipitation (mmyear�1) 0.57� 0.41 ,0.01 0.39� 0.09 ,0.001
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common near roadways and housing (Fig. 4). Approximately
60% of all ignitions occurred within 1 km of a major road, and
ignition density declined with distance more rapidly fromminor

roads than from major roads (Fig. 4). Approximately 75% of
ignitions occurred within 5 km of areas with a density of housing
units greater than 6.2 km�2. Ignition density peaked,2 km and

decreased exponentially in areas further away from housing
(Fig. 4). Ignition density was highest in areas with intermediate
levels of topographic complexity, with slopes between 20 and

40% (Fig. 4).

Influence of human and biophysical variables
on ignition occurrence

Univariate logistic regressions showed that all human-related
variables except population density were significant in
explaining ignition occurrence (P, 0.05) (Table 2). Ignition

occurrence was positively correlated with road density and
negatively correlated with distance from major roads, minor
roads and low-density housing. The presence or absence of

ignitions also was related to vegetation type, with a significantly
higher likelihood of ignition in forest and lower probability in
grassland and non-vegetated areas (Table 2). We estimated that

53% of 1980–2009 ignitions occurred in shrublands and 22% in
forests (Fig. 2e). Elevation was the only topographic variable
significantly correlated with ignition occurrence: the likelihood
of ignition increased with elevation. Precipitation was signifi-

cantly correlated with ignition presence (Table 2).
The final model based on stepwise backward selection had

10 significant variables (P, 0.0001):

logitðpiÞ ¼ �4:65� 0:12� dMajR þ 0:001� elev� 0:03

� dHousing þ 2:04� shrub� 0:22dminR þ 1:88� treeþ 0:12

� Tmax þ 0:02� slopeþ 0:02� Droads � 0:002� Dpopulation

ð4Þ
where dMajR is the distance tomajor roads (km), elev is elevation
(m), dHousing is distance to nearest housing area with density

greater than 6.2 units km�2 (km), shrub is the percentage cover
of shrubland, dminR is the distance to minor roads (km), tree is
the percentage cover of forest, Tmax is the annual average daily
maximum temperature (8C) from 1980 to 2009, slope is the

percentage slope,Droads is road density (kilometres of roads per
square kilometre) and Dpopulation is population density (number
of persons per square kilometre). The analysis of modelled

variance indicated that not all variables contributed equally to
the model fit: dMajR, elev, dHou, shrub and dminR together
explained over 87% of the model variance (Fig. 5a). The

variables tree, slope, Tmax and Tmin were highly correlated
with elev (Table 1), and their contribution to the model may
have been masked by the apparent strong influence of
elevation (Fig. 5a). Likewise, the contributions of Droads and

Dpopulation may have been masked by multicollinearities with
dMajR, dHousing, shrub and dminR (Table 1; Fig. 5a).

The ROC analysis using only the five strongest parameters

resulted in an AUC of 0.72, which indicated that the reduced
model was reasonably able to distinguish where ignitions were
most likely to occur. Our cross-validation demonstrated that the

model correctly predicted 67% of the observed distribution of
ignition occurrence.

Influence of human and biophysical variables
on ignition frequency

We found that all variables related to human presence signifi-

cantly explained variability of ignition frequency (Table 2). The
variables dMajR, dHousing and dminR were the most influential
human factors for ignition frequency (Figs 5b, 6). In contrast to

the logistic regression results, all climate variables were sig-
nificant and positively correlated with ignition frequency.
Ignitions were more frequent in areas with warmer temperatures

and higher precipitation (Table 2). The slope and shrub cover
also had significant and positive influences on ignition fre-
quency and contributed substantially to explaining the vari-

ability of ignition patterns (Table 2; Fig. 5b). The final Poisson
regression following backward selection retained all explana-
tory variables (P, 0.001) except annual average daily mini-
mum temperature:

logðIgnitionsFREQÞ ¼ �4:38� 0:14� dMajR � 0:05� dHousing

þ 0:02� slope� 0:23� dminR þ 1:13� shrubþ 0:001

� elevþ 0:15� Tmax þ 0:02� Droads � 0:001� Dpopulation

þ 0:84� precþ 0:23� swindexþ 0:67� tree

ð5Þ
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where dMajR, dHousing, slope, dminR, shrub, elev, Tmax, Droad,

Dpopulation and tree were defined as above, prec is the annual
average cumulative winter precipitation (September–March)
(mmyear�1) and swindex is the south-westness index. The

most influential predictors of ignitions frequency were dMajR,
dHousing, slope and dminR: these variables combined explained
,85% of model variance (Fig. 5b). The comparison of Poisson

and NB models to a linear model showed a clear improvement
of model performance, with a reduced AIC value (Table 3). The
linear model was inferior to the other models: the estimated
coefficients of linear regression showed significantly higher

standard errors (Table 3). Our results indicated that over-
dispersion was better captured by the NB, as the dispersion
estimate was closer to 1. The NB model improved the fit

compared to the Poisson model with a significantly reduced
bias while showing similar Pearson correlation and RMSE
values (R2¼ 0.45; RMSE¼ 2.79) (Fig. 6). The form of the

model equation for NB regression was the same as that for
Poisson regression:

logðIgnitionsFREQÞ ¼ 0:97� 0:11� dMajR � 0:04� dHousing

þ 0:03� slope� 0:25� dminR

ð6Þ

The distance to major road alone explained 33% of the

observed spatial variance in ignition frequency; distance to
housing and slope explained another 10%; and distance tominor
roads explained the remainder. We caution that the primary

influence of the variables retained in the final Poisson model
may be confounded bymulticollinearity (Table 1). For example,
the importance of slope may have been overestimated due to

implicit contributions from elev, prec, Tmax or land cover.

Predictive mapping of ignition frequency

The spatial distribution of ignition frequency predicted using the

NB model showed good agreement with the observed ignition
pattern (R2¼ 0.45; Figs 6, 7a,b). The proximity to human
infrastructure strongly determined ignition frequency (Fig. 7b;

Table 3). The model accurately captured the relative lack of
ignitions in remote, interior areas (e.g. Los Padres National
Forest). Likewise, the model accurately predicted high ignition

frequency in many areas near major roads and housing (e.g. Los
Angeles County). The model underestimated ignition frequency
along high-traffic transportation corridors (e.g. Interstate 5) and

in close proximity to some populated urban areas (e.g. San
Bernardino) (Fig. 7c). Thus, the variables used to predict igni-
tion frequency (i.e. distance to major roads and distance to
housing) were insufficient for discriminating areas where

human pressure exceeded a certain threshold.

Relationship between ignition frequency and fire frequency

We found a significant positive relationship between ignition
frequency and fire frequency. The gridded ignition frequency
observations within National Forests explained 3.0% of the

spatial variance of observed fire frequency (P, 0.001,
n¼ 2625). For this same domain, the NBmodel explained 5.3%
of the observed fire frequency variance (P, 0.001). We found
that many areas with a high potential risk of ignition did not burn

between 1980 and 2009 (Fig. 8), indicating that a substantial
component of burned area variability was not explained by the
drivers of ignition.
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Table 3. Summary of fitted regression models for ignition frequency

data

The top part of the table gives coefficient estimates (with standard errors) for

each explanatory variable. The second portion of the table compares model

performance and reports the number of estimated parameters, maximised

log-likelihood, AIC criterion and estimates of dispersion after model fitting

Model predictors Linear model Generalised linear models

Poisson Negative binomial

(Intercept) 2.10� 0.06 1.00� 0.03 0.97� 0.07

distance to major roads �0.83� 0.08 �0.14� 0.007 �0.11� 0.01

distance to housing �0.49� 0.07 �0.04� 0.003 �0.04� 0.004

slope percentage 0.58� 0.07 0.03� 0.001 0.03� 0.003

distance to minor roads �0.28� 0.09 �0.28� 0.03 �0.25� 0.04

Degrees of freedom 5 5 6

log-likelihood �5322.3 �4120.7 �3223.4

AIC criterion 10 656.7 8251.4 6446.7

Dispersion j – 3.43 0.78
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We repeated the previously described correlation analysis

separately for Santa Ana v. non-Santa Ana fires (Jin et al. 2014).
Santa Ana fires accounted for 45.0% of total burned area across
Southern California and 18.0% of the number of fires over the

30-year study period. For non-Santa Ana fires, observed igni-
tions explained 6.5% (P, 0.001) of observed fire frequency and
the estimated ignition patterns from the NB model explained

12.2% of fire frequency (P, 0.001)within theNational Forests.

Ignitions were less important, although significant, in control-
ling the spatial pattern of Santa Ana fires, with observed and
predicted ignitions explaining 3.1 and 4.9% (P, 0.001) of

observed fire frequency.

Discussion

Our modelling approach allowed us to identify the combination
of factors influencing the spatial distribution of ignitions. We
found that proximity to roads and housing were the dominant

controls for ignition frequency. All variables describing human
accessibility and urban development were significantly corre-
lated with ignition frequency. These results provided evidence

that human activities are the primary source of ignition in
Southern California and are consistent with studies that also
found increased ignition frequency near transportation corridors

(Stephens 2005) and WUIs (Syphard et al. 2007). Environ-
mental variables resulted in a higher density of ignitions for
mid-level slopes and forest land cover types. Past studies that
considered generalised linear models to predict the spatial dis-

tribution of ignition frequency arrived at similar conclusions
(Yang et al. 2007; Syphard et al. 2008). Although topographic
features usually influence fire intensity (i.e. spread rate) and the

distribution of burns across the landscape (Beaty and Taylor
2001; Alexander et al. 2006), variations in elevation cause
variations in fuel type, moisture and phenology, which in turn

control the conditions for fire ignition (Swetnam et al. 2011).
Our logistic approach confirmed that ignition occurrence ismost
strongly determined by distance to major roads and housing,

elevation and the proportion of shrub cover. Elevation may be
capturing the secondary influence of temperature, slope and tree
cover because these variables were collinear. The logistic model
captured,70% of ignition likelihood at 3-km resolution, which

we considered satisfactory considering the heterogeneity and
the large area investigated. Ignition occurrence was strongly
conditioned by fuel type, with 75% of ignitions occurring in

forest and shrubland.
Our NB approach improved model performance over com-

monly used linear and Poisson models. The NB model better

captured the clustering patterns of ignitions around urban
development and transportation corridors with a reduced set of
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predictors. Nevertheless, locations with particularly high igni-
tion frequency, such as areas adjacent to major highways and
parts of the WUI, were underestimated. It may be possible to

improve model accuracy in these areas by incorporating traffic
volume data as a proxy of human activity (www.traffic-counts.
dot.ca.gov, accessed 13 August 2013).

Besides the errors input to the underestimation of ignitions
frequency, two contrasting patterns of ignition merit discussion:
a peri-urban ignition pattern in counties with dense development

and a wildland ignition pattern in counties with sparse housing.
Contrasting human influences on ignition patterns depending on
human settlement density were reported by Badia-Perpinyá and
Pallares-Barbera (2006). This partly explains why the scattered

patterns of ignition were more difficult to capture in more rural
areas. Using a fragmentation index to describe the interspersion
of human infrastructures within wildland areas may help to

refine model predictions.
Predicted ignition frequency explained a small but signifi-

cant amount (i.e. 12%) of the observed spatial patterns in non-

Santa Ana fire frequency within the National Forests. Wildland
areas that are likely to experience greater numbers of ignitions
coincide with areas characterised by recurrent burning. Never-

theless, in more remote areas than the WUI, such as Los Padres
National Forest, where fuel fragmentation is not a limiting
factor, fires tend to spread away from ignition sources and burn
more frequently (Syphard et al. 2008). For Santa Ana fires, the

lower correlation of ignition frequency to fire frequency sug-
gested that the ignition controls on burned area patterns were
considerably weaker relative to other factors as compared to

non-Santa Ana fires. As burned area per se is not a function of
ignition probability only (Archibald et al. 2009), additional
variables related to fuel moisture, fuel continuity, fuel load

and wind speed (Moritz et al. 2010) need to be considered for
modelling burned area. Similarly, interactions between biophys-
ical factors such as wind speed and precipitation or vegetation
type may need consideration given the environmental heteroge-

neity in the region. Here, we addressed single-term effects of
explanatory variables as we sought to build a simplified model
of ignition frequency patterns. Although we also investigated

quadratic and interactive terms between biophysical variables
and between human variables, the results were not conclusive.
An important future step is to combine our estimates of ignition

frequency with other data sources to model the spatial distribu-
tion of burned area using a similar framework.

The predictive maps of ignition frequency generated in this

study are synthetic measures of the spatial influence of human
and environmental drivers on the current landscape. An impor-
tant related question is how ignition patterns will evolve during
future decades. Increasing human influence through densifica-

tion and expansion of the WUI is expected to directly affect the
wildland ignition regime (Hammer et al. 2007, Radeloff et al.
2010). California’s population is projected to increase to ,49

million in 2025, a 44% increase from 2000. Although most
population growth will occur in urban centres, housing density
within 10 km of wildlands is projected to increase by,80% by

2030 in California (Miller et al. 2011). We found distance to
nearest housing area with density greater than 6.2 units km�2

was the second most influential control of ignition risk. As a
consequence of future housing growth at the periphery of rural

and wilderness areas, it is likely that ignition risk will increase.
Traffic trends are likely to follow the WUI expansion, which
would imply higher traffic volumes along fast-growing corri-

dors such as Ventura, Orange and San Diego Counties (Crane
et al. 2002). Our analysis demonstrated that major roads carry
higher ignition risk than secondary roads. As a result, rising

traffic among highways, such as Interstate 5, which crosses the
Los Padres National Forest, and Interstate 15, which contours
the San Bernardino National Forest (Fig. 3), will likely increase

the ignition rate in these areas. Our approach may prove useful
for both fire mitigation and urban planning. For example, it may
be used to project ignition risk based on projections of future
climatic and human activity across Southern California.
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