
DOI: 10.1126/science.1209472
, 787 (2011);334 Science

 et al.Yang Chen
Surface Temperature Anomalies
Forecasting Fire Season Severity in South America Using Sea

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): July 23, 2013 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 http://www.sciencemag.org/content/334/6057/787.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

http://www.sciencemag.org/content/suppl/2011/11/10/334.6057.787.DC1.html 
can be found at: Supporting Online Material 

 http://www.sciencemag.org/content/334/6057/787.full.html#ref-list-1
, 7 of which can be accessed free:cites 34 articlesThis article 

 http://www.sciencemag.org/content/334/6057/787.full.html#related-urls
3 articles hosted by HighWire Press; see:cited by This article has been 

 http://www.sciencemag.org/cgi/collection/geochem_phys
Geochemistry, Geophysics

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2011 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

 o
n 

Ju
ly

 2
3,

 2
01

3
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/1443795513/Top1/AAAS/PDF-R-and-D-Systems-Science-130301/SCad2_Science.com_week2.raw/1?x
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/334/6057/787.full.html
http://www.sciencemag.org/content/334/6057/787.full.html#ref-list-1
http://www.sciencemag.org/content/334/6057/787.full.html#related-urls
http://www.sciencemag.org/cgi/collection/geochem_phys
http://www.sciencemag.org/


18. J. K. Crouch, J. Suppe, Geol. Soc. Am. Bull. 105,
1415 (1993).

19. N. McQuarrie, B. P. Wernicke, Geosphere 1, 147
(2005).

20. D. S. Brothers et al., Nat. Geosci. 2, 581 (2009).
21. C. T. Herzig, D. C. Jacobs, Geology 22, 991 (1994).
22. G. S. Fuis, W. D. Mooney, J. H. Healy, G. A. McMechan,

W. J. Lutter, J. Geophys. Res. 89, (B2), 1165 (1984).
23. T. Parsons, J. McCarthy, Tectonics 15, 456 (1996).
24. A. Nicolas, Nature 315, 112 (1985).
25. A. K. Schmitt, J. A. Vazquez, Earth Planet. Sci. Lett. 252,

260 (2006).
26. R. L. Evans et al., Nature 437, 249 (2005).

27. M. P. Süss, J. H. Shaw, J. Geophys. Res. 108, 2170 (2003).
28. S. E. Hansen, A. A. Nyblade, J. Julia, S. Afr. J. Geol. 112,

229 (2009).
29. W. Buck, F. Martinez, M. S. Steckler, J. R. Cochran,

Tectonics 7, 213 (1988).
30. D. Wilson et al., Nature 433, 851 (2005).
Acknowledgments: This work was supported by the

National Science Foundation EarthScope Program
(EAR-0641772) and an EAR Postdoctoral Fellowship
to V.L. (EAR-0948303). We thank the IRIS Data
Management Center and the Southern California
Earthquake Data Center for the waveform data used
in this study. We thank H. Yuan, D. Forsyth, C. Rau,

B. Schmandt, H. Ford, and D. Brothers for assistance
with methods and interpretation.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1208898/DC1
Materials and Methods
SOM Text
Figs. S1 to S10
References (31–50)

25 May 2011; accepted 26 September 2011
Published online 6 October 2011;
10.1126/science.1208898

Forecasting Fire Season Severity in
South America Using Sea Surface
Temperature Anomalies
Yang Chen,1* James T. Randerson,1 Douglas C. Morton,2 Ruth S. DeFries,3 G. James Collatz,2

Prasad S. Kasibhatla,4 Louis Giglio,5 Yufang Jin,1 Miriam E. Marlier6

Fires in South America cause forest degradation and contribute to carbon emissions associated
with land use change. We investigated the relationship between year-to-year changes in fire
activity in South America and sea surface temperatures. We found that the Oceanic Niño Index
was correlated with interannual fire activity in the eastern Amazon, whereas the Atlantic
Multidecadal Oscillation index was more closely linked with fires in the southern and southwestern
Amazon. Combining these two climate indices, we developed an empirical model to forecast
regional fire season severity with lead times of 3 to 5 months. Our approach may contribute to
the development of an early warning system for anticipating the vulnerability of Amazon forests
to fires, thus enabling more effective management with benefits for climate and air quality.

Deforestation and forest degradation in
South America contribute to anthropo-
genic carbon emissions and regional and

global climate change (1–4). Fire is the dominant
method for converting forest to cropland or pas-
ture (5, 6), and fires account for approximately
half of the carbon emissions from deforestation
and forest degradation in South America (2). Al-

though deforestation rates in the Brazilian Am-
azon have declined over the past 5 years (7),
trends in fires and burned area have not declined
by the same amount, possibly because continued
use of fire after deforestationmaintains the risk of
agricultural fires escaping into adjacent forests
(5, 8). Notably, extensive burning in the Brazilian
states of Mato Grosso and Pará during 2007 led

to the highest fire emissions of any year during
the period 1997–2009 (9), highlighting the need
to target forest degradation in addition to de-
forestation for sustained reductions in land use
emissions from the region.

Projected decreases in Amazon rainfall dur-
ing the 21st century (10, 11) may increase the risk
of forest fires (12), with the potential for larger
carbon losses (13) and a positive feedback to cli-
mate change (14). Hence, the success of future
climate mitigation and adaptation strategies will
depend in part on more effective ways to manage
fires. Advance information about the likelihood
of fires in the dry season allows time to explore
and implement management options such as al-
location of firefighting resources or targeted burn-
ing restrictions.
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Table 1. Empirical fire model and validation statistics in different high-fire states in Brazil and Bolivia.

State Peak fire month

Climate index–annual FSS
relationship* Empirical model† Validation‡

Lead time
(months) r Lead

time
Model parameter r r

ONI AMO ONI AMO a b c MOD MYD VIRS ATSR GFED3

Amazonas September 10 4 0.28 0.72 4 0.72 53.2 13.8 0.72 0.68 0.61 0.08 0.52
Pará August 3 4 0.57 0.80 3 46.4 281.2 144.1 0.88 0.68 0.72 0.55 0.54
Rondonia September 7 4 0.62 0.88 4 86.8 1502 332.9 0.93 0.45 0.91 0.58 0.78
Mato Grosso September 5 6 0.81 0.74 5 287.6 1101 483.9 0.92 0.76 0.74 0.69 0.74
El Beni September 3 5 0.42 0.75 3 135.9 960.8 331.7 0.82 0.89 0.42 0.49 0.41
Acre September 7 4 0.43 0.74 4 6.36 186.7 43.7 0.75 0.85 0.72 0.53 0.74
*Linear regressions between FSS (the annual sum of active fire counts during the fire season) recorded by Terra MODIS (MOD) and climate indices (either ONI or AMO) with different lead times
(number of months prior to the peak fire month) were performed for 2001–2009. Maximum positive correlations (r) and associated lead times (with a cutoff of at least 3 months) are shown.
Lead times are computed as the difference between the month of climate index and the peak fire month. Because the climate index is a 3-month mean SST anomaly, we report the lead time
relative to the end of the 3-month climate index interval (not the center month) to give a more accurate description of the amount of time potentially available to develop a fire season severity
forecast. †ONI and AMO values (2001–2009) that have maximum correlations with FSS were used to derive the empirical model using two-variable linear regressions; a, b, and c are
coefficients of the formula (Eq. 1). The lead time describes the number of months before peak fire season for which the empirical model can be used for FSS prediction (and is the shorter of the
two climate index lead times). r is the correlation between predicted and MODIS observed FSS for 2001–2009. ‡We validated the empirical model by comparing the predicted FSS with
observed FSS from a different MODIS onboard the Aqua satellite (MYD, 2003–2010), the Visible and Infrared Scanner onboard the Tropical Rainfall Measuring Mission (TRMM) satellite (VIRS,
1998–2009), the European Space Agency (ESA) Advanced Along Track Scanning Radiometer World Fire Atlas (ATSR, 1997–2010, algorithm 1), and fire emissions from Global Fire Emission
Database version 3 (GFED3, 1997–2009).
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Fig. 1. (A) Maximum positive correlation between Oceanic Niño Index
(ONI) and fire season severity (FSS) derived from 2001–2009 MODIS active
fire data. (B) Maximum positive correlation between Atlantic Multidecadal
Oscillation index (AMO) and FSS for the same period. (C) Mean FSS (in
terms of detectable fires per million hectares per year) observed by MODIS
during 2001–2009. (D) Correlation between predicted FSS from the em-
pirical model (Eq. 1) and observed FSS derived from MODIS. ONI is a 3-month
mean SST anomaly in the Niño 3.4 region (5°N to 5°S, 120° to 170°W) of
the Pacific (27). AMO represents a similar 3-month mean for the North

Atlantic (0° to 70°N) (28). The months at which ONI or AMO had largest
positive correlation with FSS are provided for each 5° × 5° grid cell in (A)
and (B). Also shown in the parentheses are the associated lead times (in
months) relative to the peak fire month. The months (and the associated
lead times) at which the empirical model can be used for FSS prediction are
shown in (D). The spatial distribution of active fires across the Amazon
shown in (C) is closely related to patterns of land use, including rates of
forest clearing, the distribution of protected areas, and transportation cor-
ridors (2, 6, 8, 13).
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We developed a predictive relationship be-
tween sea surface temperature (SST) anomalies
and annual fire season severity (FSS) in South
America that enables forecasts with lead times of
3 to 5months. A recent study (15) has shown that
anomalous local fire activity in the western Am-
azon can be forecast using SSTs from the tropical
North Atlantic. Our approach builds on this work
by combining information from both the Pacific
and Atlantic and by allowing for spatially vary-
ing contributions from these two different drivers
across the continent. With our model, we were
able to successfully predict interannual variability
in FSS for several regions. Examination of the
temporal and spatial variability of the model
parameters and lead times provided additional
information about the underlying mechanisms
enabling these predictions.

High-fire years in South America are often
associated with an extended dry season and anom-
alously low levels of precipitation (16–18). Pre-
vious studies [e.g., (19–21)] have shown that

precipitation variability in the Amazon is regu-
lated by SSTs in both the Pacific and Atlantic.
During the warm phase of El Niño–Southern
Oscillation (ENSO), precipitation is suppressed
over the central and eastern Amazon (22, 23). At-
lantic SSTs also contribute to precipitation var-
iability within the Amazon. Anomalously warm
SSTs over the tropical North Atlantic are be-
lieved to cause a northward displacement of the
Intertropical Convergence Zone (ITCZ), which
in turn decreases convection and precipitation dur-
ing the dry season in the western and southwest-
ern Amazon (24). Thus, the most severe droughts
observed in the Amazon over the past three dec-
ades have occurred when the tropical eastern Pa-
cific and North Atlantic were anomalously warm
(16–18, 24, 25).

Fire season severity, here defined as the sum
of satellite-based active fire counts in a 9-month
period centered at the peak fire month, depends
on multiple parameters that influence fuel mois-
ture levels and fire activity in addition to pre-

cipitation, including vapor pressure deficits, wind
speeds, ignition sources, land use decisions, and
the duration of the dry season. As a result, the
relationship between FSS and SSTs may be more
complex than the relationships between precipi-
tation and SSTs described above.

To develop our empirical model of FSS,
we used 2001–2009 fire counts detected by the
Moderate Resolution Imaging Spectroradiometer
(MODIS) onboard NASA’s Terra satellite (26)
along with Oceanic Niño Index (ONI) (27) and
Atlantic Multidecadal Oscillation index (AMO)
(28) SST anomaly time series (29). MODIS pro-
vides consistent information on active fires,
with omission and commission errors quanti-
fied in past work using ground observations and
higher-resolution satellite imagery [e.g., (29–31)].
To identify the optimal lead times for using ONI
and AMO to predict fires, we separately calcu-
lated the correlation between MODIS-derived es-
timates of FSS and each of the two climate indices
for different months prior to the peak fire month
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Fig. 2. Interannual variability of FSS from different satellites and carbon
emissions fromGFED3 compared to predictions from the empirical model (Eq. 1).
The different satellite products are denoted as in Table 1. These FSS data sets
are derived from satellite spectroradiometer observations of active fire counts
with widely varying detector sensitivities and spatial resolutions, and therefore

they are scaled to allow for more direct comparisons of interannual variability.
The GFED3 fire carbon emissions estimates from 1997–2009 were scaled in
each region except for Amazonas. Some of the variability in the observations
not captured by our predictive model probably can be attributed to directional
changes in land use within each region (29) (fig. S8).
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(i.e., for lead times of 1 to 10 months; defined
relative to the end of the 3-month SST anomaly
averaging interval of each climate index) in states
of Brazil and Bolivia where biomass burning is
high (Table 1 and fig. S1). We also estimated the
optimal lead times for 5° × 5° regions across the
continent (Fig. 1).

We defined our empirical predictive model
as a linear combination of the two climate in-
dices sampled during these months of maximum
correlation:

FSSpredicted(x,t) = a(x)� ONI[t,m(x) − tONI(x)]

þ b(x)� AMO[t,m(x) − tAMO(x)] þ c(x) ð1Þ

where FSSpredicted is the predicted FSS in
region x and year t; a and b are spatially varying
coefficients that represent the sensitivities of
FSS in each region to ONI and AMO, respec-
tively; and c is a constant. We obtained a, b, and
c by fitting the observed time series of annual
FSS from MODIS during 2001–2009 (Fig. 1C)
with ONI and AMO during the same period.
ONI and AMO were sampled each year during
months with lead times tONI and tAMO relative to
the peak fire month (m) in each region. The lead

times varied spatially in each state or 5° × 5°
region according to the maximum correlation
(either positive or negative) observed between
FSS and the individual climate indices.

Fires in the eastern Amazon were more sen-
sitive to ONI, whereas AMO had the largest
impacts on FSS in the southern and south-
western Amazon (Fig. 1). The AMO influence
on fires had a distinctive north-south pattern,
with correlations switching from strongly pos-
itive to strongly negative north of the equator
(Fig. 1 and fig. S2). AMO had a stronger pos-
itive correlation with FSS in Rondonia, Pará,
El Beni, Amazonas, and Acre, whereas ONI
was more closely linked with FSS in Mato
Grosso (Table 1 and fig. S3). These spatial pat-
terns were generally consistent with observed
relationships between Pacific and Atlantic SST
anomalies and precipitation variability within
the Amazon (20).

Optimal lead times for the two climate indices
relative to the peak fire month were 4 to 6months
for AMO and 3 to 7 months for ONI for states
other than Amazonas (Table 1). By combining
information fromAMOandONI in our empirical
regressionmodel (Eq. 1), we were able to explain
some of the interannual variability in FSS across

South America during 2001–2009 from MODIS
(Fig. 1D). Notably, high-fire years in 2004, 2005,
and 2007 had the highest values of AMO (and
positive values of ONI) during the preceding
January-to-March period (when lead times were
optimal), whereas in the lowest-fire year (2009)
AMO and ONI were both negative (fig. S4).

To verify the model, we compared the model
predictions with MODIS FSS data from 2010
(this year was not used to develop the model),
FSS data derived from three other satellites, and
carbon emissions from the Global Fire Emissions
Database version 3 (GFED3) (9) that integrates
500-m burned area and active fires from multiple
sources during 1997–2009 (Fig. 2). The model
predicted a considerable increase in fires in all
regions in 2010 (relative to the 2008 and 2009
fire seasons) that was consistent with all of the
available satellite observations (Fig. 2). Exami-
nation of the 2010 predictions in more detail for
MODIS shows that the model generated rea-
sonably accurate predictions for Acre and Pará;
overestimated fires in Rondonia, Amazonas, and
Mato Grosso; and underestimated fires in El Beni
(fig. S5). Predictions from the model in the pre-
MODIS era, relative to FSS data from other sat-
ellites and carbon emissions from GFED3, were

20
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Fig. 3. FSS anomalies for selected years and their relationship to annual ONI
and AMO. ONI and AMO were averaged during February to April, months with
optimal leads for these two indices in high-fire states in Southern Hemisphere South

America. Annual FSS anomalies observed by MODIS are shown relative to the
2001–2009mean. Positive and negative anomalies in ONI and AMOalso are shown
relative to 2001–2009mean values (–0.08 and0.13 forONI andAMO, respectively).
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most robust for Rondonia and Mato Grosso (Fig.
2 and figs. S5 to S7). For these two states, resid-
uals between observed and predicted FSS during
2001–2010 suggested that decreasing levels of
deforestation during the second half of the decade
reduced FSS and led to model overestimation of
FSS in later years, indicating the influence of
land use decisions affecting deforestation fires
independent of climate (fig. S8).

The spatial patterns of high- and low-severity
fire seasons across South America varied con-
siderably and were partially captured by the mod-
el. In 2010, for example, the model predicted
anomalously high levels of fire activity in both
the southeastern and southwestern part of the
Amazon basin, consistent with the observed pat-
tern from MODIS (Fig. 3). In 2007, in contrast,
both model estimates and MODIS observations
indicated that anomalously high fires were dis-
tributed primarily in the southeastern part of
the basin. These 2 years had high FSS despite
the lowest deforestation rates during the study
period.

Many different types of fire occur in tropical
forest and savanna biomes, including deforesta-
tion fires, agricultural waste burning, and acci-
dental forest and savanna fires from burning in
adjacent agricultural areas. To examine the po-
tential to develop separate forecasting models
for these different fire types, we conducted three
sensitivity analyses in which we separately con-
sidered forest and nonforest fires, persistent and
nonpersistent forest fires (6), and understory
fires (29, 32). Relative to our more general mod-
el, these models derived for different fire types
within each state had mostly similar levels of
performance and lead times (table S1 and figs.
S1 and S9); thus, our approach may be broad-
ly applicable for many fire types, including
fires that contribute to forest degradation. We
broadly define forest degradation here as de-
creases in tree density and the woody biomass
of forests that are not directly associated with
land clearing.

What are the mechanisms that enable fire
season forecasts from SSTs with lead times of
about 3 to 5 months for important biomass-
burning regions in Southern Hemisphere South
America? These time scales are considerably
longer than expected for direct atmospheric cir-
culation adjustments to SST anomalies. Further,
although SST anomalies vary relatively slowly
(and often have relatively long autocorrelation
time scales), the relationship between SSTanom-
alies and FSS becomes weaker with shorter lead
times (fig. S1).

We hypothesize that precipitation levels dur-
ing the precedingwet season and during the onset
of the dry season in forests of Southern Hemi-
sphere South America act as a key regulator of
drought intensity during the subsequent dry sea-
son. Evidence supporting this hypothesis comes
from analysis of the seasonal distribution of ac-
tive fires during high- and low-fire years (fig. S10).
For satellite observations available over the past

decade, the midpoint of the fire season occurred
earlier during high-fire years (fig. S11), likely as a
consequence of reduced precipitation during the
preceding months. This finding also is consistent
with the observation that precipitation anomalies
1 to 4 months before the peak fire month (corre-
sponding to the dry season and the wet-to-dry
transition season) were more negatively corre-
lated with the annual sum of fire counts thanwere
precipitation anomalies during the peak fire month
(fig. S12). The correlation between AMO and
precipitation during the wet-to-dry transition pe-
riod and early dry season was particularly strong
for southwestern Amazonia (fig. S13). Patterns
of interannual variability in precipitation also in-
dicated that climate at the onset of the dry season
was an important factor; standard deviations and
coefficients of variation were higher during the
wet-to-dry transition period than for the subse-
quent dry-to-wet transition (fig. S14).

One possible contributing factor for the time
delays between SST anomalies and dry-season
intensity may involve recharge of soil moisture in
forests during the wet season. High SST anom-
alies in the North Atlantic from November to
May limit the southward movement of the ITCZ
and thus prevent a full recharge of soil moisture
levels in forest ecosystems across the central and
southern Amazon during these months (fig. S13).
As a consequence, transpiration rates by trees
may be reduced below average during the fol-
lowing dry season, with impacts for both sur-
face humidity and precipitation (3). The time
scales for these forest-mediated interactions are
consistent with earlier work documenting deep
rooting systems (33) and hydraulic redistribution
(34) required to maintain high levels of evapo-
transpiration during the dry season (35). This
mechanism also is consistent with climate model
simulations indicating that shallower rooting
depth parameterizations increase the vulnerabil-
ity of tropical forests to future fire within the
model (14).

Our results and earlier work by Fernandes et al.
(15) provide evidence that Atlantic and Pacific
SSTs may be used to predict FSS variability with
lead times of 3 to 5 months in many regions of
high biomass burning in South America. Inter-
seasonal fire forecasts may allow for the design
of more effective mitigation and adaptation strat-
egies (29) and improve our understanding of how
fires are likely to respond to changes in Pacific
and Atlantic Ocean SSTs expected over the next
several decades (22, 29). Managing fires to con-
serve biodiversity and carbon stocks in forest
and savanna ecosystems requires advance plan-
ning on multiple time scales, including the de-
sign of policy mechanisms that modify long-
term development trajectories (36) as well as
improved use of short-term meteorological fore-
casts of fire behavior during years with high FSS
[e.g., (37)]. Our analysis suggests that inter-
seasonal fire forecasts may complement fire
management efforts on these shorter and longer
time scales.
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