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Evapotranspiration (ET) is a major pathway for water loss from many ecosystems, and its seasonal variation
affects soil moisture and net ecosystem CO2 exchange. We developed an algorithm to estimate ET using a
semi-empirical Priestley–Taylor (PT) approach, which can be applied at a range of spatial scales. We
estimated regional net radiation (Rnet) at monthly time scales using MODerate resolution Imaging
Spectroradiometer (MODIS) albedo and land surface temperature. Good agreement was found between
satellite-based estimates of monthly Rnet and field-measured Rnet, with a RMSE of less than 30 Wm−2. An
adjustable PT coefficient was parameterized as a function of leaf area index and soil moisture based on
observations from 27 AmeriFlux eddy covariance sites. The biome specific optimization using tower-based
observations performed well, with a RMSE of 17 Wm−2 and a correlation of 0.90 for predicted monthly latent
heat. We implemented the approach within the hydrology module of the CASA biogeochemical model, and
used it to estimate ET at a 1 km spatial resolution for the conterminous United States (CONUS). The RMSE of
modeled ET was reduced to 21.1 mm mon−1, compared to 27.1 mm mon−1 in the original CASA model. The
monthly ET rates averaged over the Mississippi River basin were similar to those derived using GRACE
satellite measurements and river discharge data. ET varied substantially over the CONUS, with annual mean
values of 110±76 mm yr−1 in deserts, 391±176 mm yr−1 in savannas and grasslands, and 840±
234 mm yr−1 in broadleaf forests. The PT coefficient was the main driver for the spatial variation of ET in
arid areas, whereas Rnet controlled ET when mean annual precipitation was higher than approximately
400 mm yr−1.
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1. Introduction

Average annual evapotranspiration (ET) from the global land
surface is around 60 to 65% of precipitation (Baumgartner & Reichel,
1975). ET is an important flux that links water, carbon, and energy
(Campbell & Norman, 1998). Together with precipitation and runoff,
ET governs water availability, and plays a key role in water resource
planning and management. Available water resources are being
tapped close to the limit in many parts of the world, and accurate
estimates of the consumptive use of water through ET are needed.
Annual ET is approximately equal to precipitation when averaged
over many years in hot arid environments, whereas it is regulated
primarily by available energy in humid environments (Choudhury &
DiGirolamo, 1998).

Various distributed hydrological models and land surface param-
eterization schemes have been developed to quantify and predict
regional ET flux (Overgaard et al., 2006). Recent efforts to improve
regional ET estimates make use of the spatial and temporal coverage
of satellite observations of vegetation properties and surface temper-
ature. A common approach is based on the land surface energy
balance (SEB), either to calculate latent heat as the residual of SEB by
subtracting sensible heat from available energy, or to estimate
evaporative fraction (EF). Main operational approaches include the
Resistance Surface Energy Balance (Kalma & Jupp, 1990), the Surface
Energy Balance Algorithm for Land (SEBAL) (Bastiaanssen et al.,
1998a; Bastiaanssen et al., 1998b), and the Surface Energy Balance
System (SEBS) (Su, 2002). The calculation of sensible heat flux from
remote sensing data is sensitive to the accuracy of the estimated
difference between surface and air temperature and is limited by
estimates of aerodynamic resistance. On the other hand, using EF
estimated from satellite images has the advantage of reducing the
complexity related to the determination of sensible heat. The
“triangle-method” has been developed to estimate EF using the
diagram of surface radiant temperature (Ts) and vegetation index (VI)
(Jiang & Islam, 2001; Nishida et al., 2003). It is based on the
scatterplots of VI and Ts for all pixels in a satellite image which are
typically bounded by a triangle with vertices representing the dry and
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wet bare soil and full-cover vegetation (Gillies et al., 1997). SEB terms
for the extreme cases (e.g., completely wet or dry pixels) can be either
estimated from ground data or resolved from physically-based
models, allowing linear interpolation to all pixels. Another similar
method estimates EF using the diagram of LST and broadband albedo
from satellite images without the use of field data (Bastiaanssen et al.,
1998a; Bastiaanssen et al., 1998b; Roerink et al., 2000; Verstraeten et
al., 2005, 2008). However, deriving surface parameters from the
vertex of VI–Ts or LST-albedo scatterplots requires a continuum of soil
moisture and vegetation status to provide a range of surface
conditions, and many parameters are required to resolve the end-
member SEB terms. These methods are usually calibrated for specific
regions; their robustness across multiple regions has not been
systematically evaluated.

Environmental and biophysical controls play important roles in
regulating ET on diurnal to interannual time scales (Baldocchi et al.,
2004; Baldocchi & Xu, 2007; Ryu et al., 2008). Statistical empirical
models have been developed to upscale the ground-based flux data to
regional scales by building statistical relationships between field
measured ET and a suite of environmental and satellite derived
vegetation properties (Nagler et al., 2005). Dahm et al. (2002) present
evidence that the best predictor of ET in a semi-arid drainage basin is
leaf area index (LAI), and the relationship appears to hold across
species during periods with limited or no water stress. Surface
resistance increases and the response of different species diverges
with increasing water or salt stress (Nagler et al., 2003). These
empirical relationships were developed from a limited number of
sites and their application to other ecosystems requires validation.
Machine learning techniques have also been trained with networks of
ground-based observations to predict ET at regional or continental
scales based on meteorological data and remotely sensed vegetation
properties (Jung et al., 2009; Jung et al., 2010; Lu & Zhuang, 2010;
Yang et al., 2006). An important challenge with these approaches is
understanding the mechanisms by which key driving variables
interact, thus enabling use of the models to extrapolate fluxes to
past and future periods.

The Penman–Monteith (PM) equation (Monteith, 1965) is a well-
accepted physically-based formulation for estimating ET that com-
bines energy and aerodynamic considerations. It requires information
on available energy, air temperature, humidity, wind speed, and
surface and canopy aerodynamic resistance. Recent work has focused
on developing generalized parameterizations for canopy conductance
that use satellite observations as a basis for predicting regional to
continental-scale fluxes (Cleugh et al., 2007; Mu et al., 2007; Zhang et
al., 2010). Leaf level stomatal conductance, for example, is constrained
by minimum temperature and vapor pressure deficit (VPD), and then
combined with satellite-derived LAI to calculate canopy level
conductance for use in a modified PM equation to estimate canopy
transpiration at a global scale (Cleugh et al., 2007; Mu et al., 2007). A
semi-empirical algorithm also has been developed to estimate ET by
relating aerodynamic conductance with wind speed and relating
surface conductance with vegetation index and relative humidity
deficit (Wang et al., 2010).

The Priestley–Taylor (PT) equation is a modified and simplified PM
method without complex parameterizations of aerodynamic and
surface resistance (Priestley & Taylor, 1972) and has been shown to
have both a theoretical basis and experimental support (Eichinger et
al., 1996). Sumner and Jacobs (2005) show that the PT method, where
α is parameterized as a function of green LAI and solar radiation,
provides the highest correlation with ET measurements, whereas the
PMmethod, in which the bulk surface conductance is a function of net
radiation (Rnet) and vapor-pressure deficit, is slightly less effective in
pastures. A contextual interpretation of the triangle-space of remotely
sensed NDVI and LST over Southern Great Plains is used to estimate
the PT coefficient and evapotranspiration without any ground-based
data (Jiang & Islam, 2001). This approach assumes differences in
surface temperature are caused primarily by evaporation from a given
scenario of Rnet. Alternatively, Fisher et al. (2008) show that it is
possible to scale potential LE to actual LE based on ecophysiological
constraints (LAI, green fraction of the canopy, plant moisture, and
plant temperature) without using any ground data.

Here we developed a PT-based semi-empirical approach based on
AmeriFlux eddy covariance measurements for estimating ET at
regional to continental scales using MODIS satellite observations.
We used satellite observations in two ways: (1) we used MODIS
albedo and land surface temperature (LST) along with meteorological
data to estimate Rnet, and (2) we used MODIS LAI to dynamically
adjust the PT coefficient (α) during each monthly time step. A unique
aspect of our approach is the calculation of calibrated satellite
estimates of regional Rnet and ground heat flux at a high spatial
resolution. We found that the satellite-based monthly Rnet estimates
agreed reasonably well with field measurements. Key questions
in the context of PT α optimization include: (1) What biophysical
and environmental variables control α on seasonal time scales?
and (2) What is the best way to parameterize α across different
ecosystem types. We optimized α as a function of LAI and soil
moisture for individual sites and for major biomes using AmeriFlux
measurements from 27 sites distributed across North America
(Baldocchi et al., 2001). We then integrated this ET algorithm into
the soil moisture module of the Carnegie–Ames–Stanford-Approach
(CASA) biogeochemical model (Potter et al., 1993). Our results
showed improvements for both ET and soil moisture estimates. The
analysis of regional ET estimates over the conterminous United States
(CONUS) indicated the shift of constraints for ET from water to
available energy with increasing precipitation. Finally we estimated
ET and runoff for continental river basins, and compared the results
with previous estimates derived from the GRACE satellite and river
discharge.

2. Data and methods

Our algorithm is based on the PT semi-empirical approach
(Priestley & Taylor, 1972):

λE = α
Δ Tað Þ

Δ Tað Þ + γ Tað Þ Rnet−Gð Þ ð1Þ

where λE is the latent heat flux inWm−2, α is the PT coefficient,Δ(Ta)
is the slope of the relationship between saturation vapor pressure and
air temperature, and γ(Ta) is the psychrometric constant. BothΔ and γ
are a function of air temperature (Ta). Rnet and G are net radiation and
ground heat flux inWm−2, which were estimated using satellite data
as described in Sections 2.1 and 2.2 for regional ET estimates. We
optimized the PT α coefficient based on tower observations as
described in Section 2.3.

2.1. Regional net radiation estimate

Surface Rnet is affected by both atmospheric and land surface
properties, and estimation of surface Rnet at a high spatial resolution is
challenging. MODIS satellite observations provide high spatial
resolution products of surface physical properties such as albedo
and temperature/emissivity. These contribute to the heterogeneity in
Rnet. In contrast, the incoming solar radiation (S↓) and incoming
longwave radiation (L↓) are mainly controlled by cloud cover and the
profiles of aerosols, temperature, and water vapor, which tend to be
less heterogeneous than surface properties. Rnet and individual
radiation components from the Clouds and the Earth's Radiant Energy
System (CERES) at 1°×1° have high accuracy, but cannot resolve high
resolution spatial heterogeneity caused by rapidly changing surface
albedo and land surface temperature over short (~1 km) distances.
Here we integrated the high resolution MODIS land surface products
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with relatively coarse resolution (but high quality) satellite products
of S↓ and cloud fraction. This provided the highest possible spatial
resolution of surface Rnet for our regional estimates of ET (Sections 2.4
and 3.4):

Rnet = S↓⋅ 1−albedoð Þ + εs⋅L
↓ Ta; e; cloudð Þ−L↑ Ts; εsð Þ: ð2Þ

We estimated net shortwave (SW) radiation (the first term on the
right side of Eq. (2)) by combining satellite-derived surface S↓ and
albedo. We used the monthly S↓ dataset for the CONUS from the
Global Energy and Water Cycle Experiment (GEWEX) Americas
Prediction Project Surface Radiation Budget (GAPP/SRB) data
(http://www.meto.umd.edu/~srb/gcip/cgi-bin/main.cgi). This dataset
uses amodified version of the GEWEX/Surface Radiation Budget (SRB)
model (Pinker et al., 2002; Pinker et al., 2003) to generate S↓ from
Geostationary Operational Environmental Satellites (GOES) observa-
tions at a 0.5°×0.5° spatial resolution from 1996 to present.

We derived monthly all sky shortwave albedo based on MODIS
collection 5 surface Bidirectional Reflectance Distribution Function
(BRDF)/albedo product (MOD43B1) during each 16-day interval at
1 km spatial resolution (Schaaf et al., 2002). The all sky albedo was
calculated as a weighted sum of black-sky albedo and white sky
albedo by the ratio of direct and diffuse incoming solar radiation over
the total S↓. We calculated 3-hourly black-sky albedo from the MODIS
BRDF parameters and used the 3-hourly monthly mean direct and
diffuse radiation data from the GEWEX/SRB data set (Stackhouse et al.,
2010) to derive 3-hourly and monthly mean all sky albedo (Jin et al.,
2003a; Jin et al., 2003b).

Incoming longwave radiation (L↓) was estimated with the Stefan–
Boltzmann law,

L↓ = ε⋅σT4
a ≈ εclr⋅ 1 + μ⋅Fv

� �
⋅σT4

a ð3Þ

where σ is Stefan–Boltzmann constant and Ta is the absolute
temperature (K) at the reference height (2 m). The all sky effective
(or apparent) emissivity (ε) is mainly controlled by air temperature
(Ta), atmospheric water vapor (e), and clouds. We adopted an
empirical approach from Prata(1996) to estimate clear sky emissivity
(εclr) for incoming longwave radiation,

εclr = 1− 1 + ξð Þ exp − 1:2 + 3:0ξÞ12
� on

ð4Þ

where ξ = 46:5 e0
Ta

� �
, and e0 is near-surface vapor pressure (hPa), and

Ta is near-surface temperature (K). Under all sky conditions, the
emissivity ε was estimated with cloud fraction (F) (Duarte et al.,
2006):

ε = εclr 1 + μ⋅Fν
� �

: ð5Þ

We used monthly 2 m air temperature (Ta) from the Oregon State
University Parameter-elevation Regressions on Independent Slopes
Model (PRISM) project at a 2.5 min (~4 km) resolution (Daly et al.,
2008), near surface vapor pressure (e0) from the NCEP reanalysis 2
project (http://www.cdc.noaa.gov) at approximately 210 km×210 km
(Kalnay et al., 1996), and GAPP/SRB cloud fraction (F) derived from
GOES observations at 0.5°×0.5° resolution (Pinker et al., 2003). We
optimized parameters μ andν based onmonthly L↓data fromAmeriFlux
observations (Section 2.3). These values were 0.317 and 3.250 using a
non-linear least squares optimization procedure (LSQNONLIN) in
MatLab (Coleman & Li, 1996).

The amount of energy emitted by land surface is dependent on
surface temperature (Ts) and surface emissivity (εs). The outgoing
longwave radiation (L↑) at surface was estimated with the Stefan–
Boltzmann law using MODIS 8-day LST product at 1 km resolution
from MODIS Terra (MOD11A2) and Aqua observations (MYD11A2)
(Wan, 2008). Both MODIS Terra and Aqua make two daily observa-
tions, one during daytime, and the second at night. We estimated the
daily mean surface temperature by fitting a two-phase sinusoidal
model (Sun & Pinker, 2005) through the four MODIS Terra and Aqua
temperatures. The monthly mean surface temperature was calculated
as the average of daily means over each 8-day time periodwithin each
month. The emissivities over individual bands were converted to
broadband emissivity using the conversion coefficients provided by
Jin and Liang (2006). LST is retrieved only in clear-sky conditions, and
is not contaminated by cloud-top temperature (Wan, 2008). Differ-
ence in L↑ and thus Rnet during clear and cloudy periods introduces
uncertainty and contributes to model biases and variability as shown
in Section 3.2. Errors are probably relatively small in desert areas and
increase in areas with higher levels of cloud cover.

We compared our estimated surface Rnet with both the AmeriFlux
observations (Section 2.3) and the monthly regional 1°×1° gridded
Surface Radiation Budget average (SRBAVG-GEO) data product
produced by the CERES project (Wielicki, 1996; Wielicki et al.,
1998). It is available online at http://eosweb.larc.nasa.gov/PRODOCS/
ceres/level3_srbavg_table.html. The CERES data products from Terra
and Aqua represent a new generation of radiation budget data that
use up to 11 instruments on 7 spacecraft to improve angular and
temporal sampling (e.g., Wielicki et al., 1998).

2.2. Soil heat flux

We estimated total available energy as the balance between Rnet

and ground heat flux (G). G was derived using a modified empirical
approach based on the algorithm developed by Su (2002):

G = c + a⋅fveg + b⋅fsoil
� �

⋅Rnet ð6Þ

where parameters a and b represent the fractions of G over Rnet for
pure vegetation and soil, and parameter c is an offset. The fraction of
vegetation (fveg) and soil (fsoil) were estimated from the MODIS
collection 5 LAI product (MOD15A2) at 1 km resolution and for 8-day
intervals (Myneni et al., 2002), using the formula e−0.4 ⋅ LAI for fsoil (Su
et al., 2001). We estimated a, b, and c using the AmeriFlux G and Rnet

observations (Section 2.3) at a monthly time scale with the
LSQNONLIN optimization routine in MATLAB (Coleman & Li, 1996).

2.3. AmeriFlux data and PT α coefficient optimization

We chose to allow α to respond to both LAI and soil moisture
because of large temporal offsets in the timing of peak Rnet and peak
LE in many shrubland and grassland sites as shown in Section 3.1. We
formulated α as,

α = a1⋅ 1−e −b1⋅LAIð Þ� �
⋅ 1−e c1−d1⋅VSMð Þ� �

⋅f Tað Þ: ð7Þ

Where LAI is the leaf area index (typically varying from 0 to 6),

VSM is volumetric soil moisture in
cm3water
cm3soil

. f(Ta) is a temperature

scalar, which was set to 0.05 when the near surface air temperature
was below−5 °C and otherwise was set to 1. A set of four parameters
(a1, b1, c1, and d1) required optimization.

We used AmeriFlux data and MODIS collection 5 LAI product
(Myneni et al., 2002) in developing parameterizations of α. The
AmeriFlux network provides continuousmeasurements of CO2, water,
energy, and meteorological variables every half hour across climate
gradients and within multiple ecosystem types (Baldocchi et al.,
2001). We focused on sites that had latent heat, Rnet, and soil moisture
observations from 2001 to 2006. A total of 27 sites met these criteria
(Table 1). These sites included several plant functional types, and
encompassed a broad range of temperature and soil moisture.
Additionally, we used 7 sites that lacked soil moisture measurements

http://www.meto.umd.edu/~srb/gcip/cgi-bin/main.cgi
http://www.cdc.noaa.gov
http://eosweb.larc.nasa.gov/PRODOCS/ceres/level3_srbavg_table.html
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Table 1
Site characteristics for 27 AmeriFlux sites used for optimization and for 7 AmeriFlux sites used for validation.a

Site name Veg. Lat Lon Rnet
b LAIc VSMb Ta

b LEb αb PI Reference

Sites used for optimization
Duke Hardwoods DBFd 36.0 −79.1 94 4.1 0.35 15.2 54 0.94 R. Oren Oishi et al. (2008)
Missouri Ozark DBFd 38.7 −92.2 103 3.7 0.30 11.6 56 0.95 L. Gu Gu et al. (2006)
Morgan Monroe DBFd 39.3 −86.4 91 3.7 0.39 12.8 44 0.81 H. Schmid Sims et al. (2008)
Bartlett DBFd 44.1 −71.3 85 3.6 0.35 7.3 25 0.48 A. Richardson Jenkins et al. (2007)
Willow Creek DBFd 45.9 −90.1 78 2.6 0.31 5.9 27 0.65 P. Bolstad Bolstad et al. (2004)
North Carolina LP MFd 36.8 −76.7 111 5.2 0.32 14.7 86 1.26 J. Chen Chen et al. (2004)
North Carolina CC MFd 35.8 −76.7 98 4.4 0.42 10.5 71 1.30 J. Chen Chen et al. (2004)
Sylvania Wilderness MFd 46.2 −89.3 66 2.8 0.21 4.8 28 0.88 P. Bolstad Desai et al. (2005)
Duke Forest Pine ENFd 36.0 −79.1 98 4.1 0.29 14.8 58 0.97 G. Katul Albertson et al. (2001)
Blodgett ENFd 38.9 −120.6 113 4.1 0.23 11.4 55 0.86 A. Goldstein Kurpius et al. (2003)
Metolius Intermediate ENFd 44.5 −121.6 91 3.0 0.11 6.9 34 0.75 B. Law Schwarz et al. (2004)
Wind River ENFd 45.8 −122.0 96 3.1 0.30 9.7 38 0.72 K. Bible Wharton et al. (2009)
Tonzi Savanna 38.4 −121.0 101 1.8 0.21 16.6 31 0.47 D. Baldocchi Baldocchi et al. (2004)
Toledo Savanna 41.6 −83.8 88 3.6 0.19 10.3 50 1.02 J. Chen Noormets et al. (2008)
Audubon Grassland 31.6 −110.5 59 0.5 0.16 14.6 22 0.65 T. Meyers
Kendall Grasslands Grassland 31.7 −109.9 76 0.4 0.05 15.5 17 0.35 R. Scott Scott et al. (2006)
Goodwin Creek Grassland 34.3 −90.0 88 1.7 0.33 15.4 54 0.99 T. Meyers Houborg et al. (2009)
ARM SGP Control Grassland 35.5 −98.0 90 1.0 0.22 13.8 55 1.01 M. Torn Sims and Bradford (2001)
ARM SGP Burn Grassland 35.6 −98.0 84 1.0 0.25 14.1 50 0.93 M. Torn Sims and Bradford (2001)
Walnut River Grassland 37.5 −96.9 103 0.9 0.37 10.0 48 0.85 R. Coulter Coulter et al. (2006)
Vaira Grassland 38.4 −121.0 71 1.8 0.15 16.0 24 0.54 D. Baldocchi Ryu et al. (2008)
Fermi Prairie Grassland 41.8 −88.2 93 1.1 0.35 7.1 45 0.95 R. Matamala Matamala et al. (2008)
Brookings Grassland 44.3 −96.8 77 1.0 0.43 7.2 67 1.75 T. Meyers Gilmanov et al. (2005)
Fort Peck Grassland 48.3 −105.1 52 0.4 0.25 6.0 27 1.19 T. Meyers
ARM SGP Main Cropland 36.6 −97.5 80 0.8 0.25 15.4 37 0.70 M. Torn Sims and Bradford (2001)
Bondville Cropland 40.0 −88.3 82 0.9 0.30 11.6 49 1.06 T. Meyers Hollinger et al. (2005)
Fermi Agriculture Cropland 41.9 −88.2 80 1.1 0.32 7.5 48 1.17 R. Matamala Matamala et al. (2008)

Sites used for validation
Harvard Forest DBFd 42.5 −72.2 71 4.2 – 8.1 31 0.95 J. Munger Urbanski et al. (2007)
Little Prospect Hill DBFd 42.5 −72.2 – 3.6 – 5.3 44 – J. Hadley Hadley et al. (2008)
Howland Forest Main MFd 45.2 −68.7 72 5.2 – 6.5 26 0.73 D. Hollinger Hollinger et al. (2004)
Park Falls MFd 45.9 −90.3 62 3.3 – 5.3 34 1.05 K. Davis Davis et al. (2003)
Donaldson ENFd 29.8 −82.2 107 2.5 – 20.2 74 0.96 T. Martin Powell et al. (2005)
Mize ENFd 29.8 −82.2 119 4.3 – 19.8 75 0.86 T. Martin Powell et al. (2005)
Lost Creek Shrubland 46.1 −90.0 63 3.1 – 4.7 29 0.97 A. Desai Davis et al. (2003)

a Physical properties are annual means from AmeriFlux Level 2 data during 2001~2006. More site information can be found at (http://public.ornl.gov/AmeriFlux).
b Volumetric soil moisture (VSM), air temperature (Ta) in degrees Celsius, and latent heat (LE) and net radiation (Rnet) in units ofWm−2 from fieldmeasurements. Also shown are

Priestley–Taylor α coefficients derived from Eq. (1).
c Leaf area index from MODIS.
d DBF: deciduous broadleaf forest; ENF: evergreen needleleaf forest; MF: mixed forest.
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for the validation of our ET algorithm. We obtained level 2 half hourly
data from the Oak Ridge National Lab (ORNL) Carbon Dioxide
Information Analysis Center (CDIAC) ftp server (ftp://cdiac.ornl.gov/
pub/AmeriFlux/data/Level2/). Data from individual sites were
reviewed and checked to generate a consistent level 2 data set in a
standardized format. We then averaged the half hourly data to daily,
8-day, andmonthly time intervals. The α values at each individual site
were derived through inversion of the Eq. (1) at all these time scales.

We performed three sets of optimizations for the parameters in
Eq. (7): (1) for each site, (2) for each plant functional type, and (3)
with one set of parameters across all biomes, respectively, at a
monthly time step. The optimization involved minimizing the
difference between observed α (derived by inverting Eq. (1) using
tower observations of Rnet, G, Ta, and LE) and the predicted α using
MODIS LAI and tower-measured soil moisture and temperature as
predictors. We performed the minimization for each individual site
using monthly data, which is hereafter called the site-based
optimization. For regional or global applications, it is more useful to
obtain the parameterization of Eq. (7) over different plant functional
types, or to obtain a more general global parameterization if errors are
within an acceptable range. We thus grouped the AmeriFlux data into
4 biome types: 1. broadleaf forests; 2. needleleaf and mixed forests; 3.
grasslands, shrublands and savannas; and 4. agriculture, and
performed an optimization for each type, which we hereafter refer
to as the plant functional type-based (PFT-based) optimization. We
performed the optimization for 4 broad PFTs instead of each
individual land cover types because of the limited number of available
sites for specific land cover types such as savanna and shrublands. The
PFT-based optimization is the average representation of all the land
cover types within each PFT. For agriculture, we did another
optimization where we set the soil moisture scalar in Eq. (7) to 1
over irrigated croplands (thus removing water stress constraints in
areas with ample water supply). A global optimization was also done
using all the AmeriFlux data in which we solved for a single set of
coefficients in Eq. (7). For comparison, we also performed an
optimization of a constant α for each site, hereafter called time-
invariant optimization.

2.4. Implementation in the CASA biogeochemical model over CONUS

The CASA biogeochemical model simulates soil moisture using a
simple bucket hydrology model (Potter et al., 1993). ET is a major loss
pathway for water, and the soil water content at the current time step
is calculated from the previous soil water content plus current
precipitation minus actual ET. The excess of estimated soil water
content over field capacity is output as drainage. The ET estimate in
the original version of CASA was based primarily on the Thornthwaite
potential ET (PET) approach using air temperature, latitude, and an
annual heat index (Thornthwaite, 1948).

We modified the ET estimate in CASA using our PT algorithm with
a PFT-based optimization as described in Section 2.3. Soil moisture at
previous time step from CASA was used to estimate α using Eq. (7)

ftp://cdiac.ornl.gov/pub/AmeriFlux/data/Level2/
ftp://cdiac.ornl.gov/pub/AmeriFlux/data/Level2/
http://dx.doi.org/10.1029/2006JD007161
http://dx.doi.org/10.1111/J.13652005.01093.X
http://public.ornl.gov/AmeriFlux
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together with MODIS LAI. We set the extractable water (the previous
soil water content plus current precipitation minus wilting point) as
the upper bound of ET at the current time step. We also modified field
capacity based on % sand, % clay, and % silt (Bonan, 1996; Yang et al.,
1998) to better represent spatial variability in soil properties. Monthly
maps of Rnet and G were derived following the approach described in
Sections 2.1 and 2.2, using information fromMODIS observations. We
performed a PFT-based optimization for our regional application
using our regional maps of Rnet and ground heat flux instead of the
tower measured quantities using the same method described in
a

b

e

f

Fig. 1. Net radiation (Rnet), latent heat (LE), leaf area index (LAI), and the Priestley–Taylor α c
sites. All quantities are monthly means averaged over the multi-year time period of each obs
(a,c,e,g) and PT α coefficients (b,d,f,h) from site based optimization using tower measurem
Section 2.3. The regional ET and soil moisture were then derived over
CONUS at 1 km spatial resolution at a monthly time scale during 2006
to 2008. MODIS IGBP land cover types (Friedl et al., 2002)
were aggregated to 4 plant functional types. For the cropland
identified by MODIS, we used the 2002 1 km irrigated land map
bhttp://earlywarning.usgs.gov/usewem/N (Pervez & Brown, 2010) to
identify irrigated cropland— in these areas we used optimization
parameters that did not include a soil moisture constraint.

We used monthly temperature and precipitation data at a 2.5 min
(~4 km) resolution from PRISM (Daly et al., 2008) as meteorological
c

d

g

h

oefficient for (a, b) Morgan Monroe, (c, d) Blodgett, (e, f) Tonzi, and (g, h) Walnut River
ervation station. The open circles and dashed lines show the predicted latent heat (LEp)
ents.

http://earlywarning.usgs.gov/usewem/


Table 2
Pearson correlation betweenmonthly latent heat (LE) and net radiation (Rnet), available
energy (AE), leaf area index (LAI), and volumetric soil water content (VSM).

Site name Rnet AE LAI VSM

Duke Forest Hardwood 0.90 0.90 0.88 −0.55
Missouri Ozark 0.89 0.90 0.85 −0.77
Morgan Monroe 0.88 0.89 0.85 −0.43
Bartlett 0.90 0.91 0.81 *−0.33
Willow Creek 0.83 0.83 0.89 *−0.07

North Carolina LP 0.90 0.89 0.83 −0.56
North Carolina CC 0.86 0.87 0.92 −0.48
Sylvania Wilderness 0.82 0.82 0.92 *−0.24
Duke Forest Pine 0.91 0.91 0.86 −0.51
Blodgett 0.92 0.92 0.52 −0.65
Metolius Intermediate Pine 0.85 0.86 0.48 *−0.12
Wind River 0.91 0.90 0.60 −0.55

Tonzi 0.50 0.51 0.77 0.27
Toledo 0.82 0.81 0.91 −0.64

Audubon 0.61 0.76 0.71 0.42
Kendall Grasslands 0.48 0.52 0.64 0.80
Goodwin Creek 0.88 0.88 0.75 *−0.22
ARM SGP Control 0.93 0.94 0.86 *0.30
ARM SGP Burn 0.92 0.93 0.85 0.31
Walnut River 0.96 0.95 0.96 −0.52
Vaira *0.16 *0.21 0.84 0.53
Fermi Prairie 0.92 0.92 0.82 −0.50
Brookings 0.90 0.92 0.73 0.52
Fort Peck 0.70 0.77 0.73 0.55

ARM SGP Main 0.67 0.64 0.57 *0.20
Bondville 0.83 0.81 0.71 *−0.05
Fermi Agriculture 0.87 0.87 0.61 −0.46

Harvard Forest 0.81 0.78 0.74 –

Little Prospect Hill 0.87 0.88 0.89 –

Howland Forest Main 0.82 0.82 0.61 –

Park Falls *0.09 *0.29 0.88 –

Donaldson 0.64 0.63 *−0.13 –

Mize 0.85 0.82 0.58 –

Lost Creek 0.89 0.87 0.88 –

Statistics are derived from monthly AmeriFlux data and MODIS LAI from 2001 to 2006.
The correlations that are not significant (pN0.05) are denoted with *.
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inputs for CASA. Soil water content was initialized with zero value and
the hydrology model was spun up for 5 years using the 3 year average
of all input variables to reach steady state, and then the interannual
run was performed using the interannually varying input variables to
estimate ET and then soil moisture at each monthly time step. ET
estimates were compared with the original version CASA ET and
official MODIS ET (MOD16) product (Mu et al., 2007) over all
AmeriFlux sites, and validatedwith the towermeasurements at 7 sites
that did not have soil moisture measurements. We also compared
basin scale ET and runoff derived from CASA ET and the PRISM
precipitation dataset with those from MOD16 ET and annual river
discharge data.

2.5. Data preprocessing

MODIS albedo, land surface temperature and LAI data were
aggregated to a monthly time scale for our regional ET estimates for
CONUS. A linear regression method was applied to detect and remove
poor quality data.We then linearly interpolated gaps in the LAI record.
All the input datasets were preprocessed to a 1 km resolution at a
common Albers equal area projection.

2.6. Model performance

For each optimization, we summarized the correlation and p
values of the predicted α and those derived from tower data, as well as
the correlation, root mean square error (RMSE), mean bias, and Taylor
score of the predicted latent heat flux. We also used Taylor diagrams
(Taylor, 2001) to summarize the performance of each optimization in
predicting LE to visualize and quantify how closely the modeled LE
resembled the observed LE.

3. Results

3.1. Controlling factors for latent heat flux

3.1.1. Seasonal patterns of latent heat flux
Fig. 1 shows multi-year mean monthly Rnet and latent heat from

observations at 4 tower sites, along with LAI from MODIS and α
estimated directly from the flux tower observations using Eq. (1). Rnet

at all sites reached a maximum in June or July corresponding to the
maximum incoming solar radiation. Latent heat followed a similar
seasonal cycle in broadleaf forests (Fig. 1a, Morgan Monroe), where
there was ample water for evapotranspiration. LAI and soil moisture
had a seasonal pattern in this deciduous forest that was similar to Rnet.
At the Blodgett needleleaf forest site, the volumetric soil moisture
started to decrease from April and reached a minimum in September
(Fig. S1b), whereas LAI increased from January through May and
remained high until November (Fig. 1d). As a consequence of the
changes in these two opposing drivers, ET peaked in July in phasewith
Rnet (Fig. 1c). In contrast, at many grassland sites, including the Tonzi
savanna site in California (Fig. 1e, f) and the Walnut River grassland
site in Kansas (Fig. 1g, h), LE reached a maximum prior to Rnet as a
consequence of the moisture limitation on leaf area and conductance.

The seasonal cycle of latent heat was very different from that of
Rnet at the Tonzi savanna site, where latent heat peaked earlier than
Rnet. The soil was wet from January to March during the winter rainy
season (Fig. S1c), and Rnet was much lower (by a factor of two) in
winter than in summer. The latent heat increased gradually in spring
with increases in Rnet and leaf area. In April, LAI reached a maximum
of 3.8 and then declined to 40% of this maximum by June. The
maximum latent heat in May reflected a tradeoff between decreasing
leaf area index (and soil moisture) and increasing Rnet. This is typical
for a Mediterranean climate and indicated that soil water content and
leaf area index regulated the seasonal trajectory of ET in addition to
Rnet or available energy.
Walnut River is a mix of C3 and C4 tallgrass prairie, with cattle
grazing (Coulter et al., 2006). The maximum of Rnet occurred in July
(186 Wm−2) and LAI peaked in June (1.8). Both Rnet and LAI
controlled the seasonality of latent heat flux, and the maximum
latent heat flux (99 Wm−2) occurred in June. Soil moisture showed
an opposite seasonality from LAI, with monthly mean volumetric soil
moisture ranging from 52% in February to 24% in August. Soil moisture
also played an important role in regulating LE, e.g., α was higher in
June than in August due to higher soil moisture.

3.1.2. Controls on latent heat flux
Table 2 summarizes the correlation of monthly latent heat flux

with monthly Rnet, available energy, LAI, and soil moisture at a
monthly time scale. Variation in Rnet or available energy explained
65% to 80% of the variance in monthly latent heat at 26 of 34 sites
(including the 7 validation sites). The correlation in all forest sites was
higher than 0.80. Available energy was not always a good predictor of
LE in savanna and shrubland ecosystems. The correlation coefficients
ranged from 0.50 at Tonzi savanna, 0.61 at the Audubon open
shrubland site in Arizona, and 0.82 at the Toledo oak woodlands/
savanna/prairie complexes in Ohio. Correlations were low at some of
the grassland sites, including, for example, the Vaira tower in
California (0.16) and the Kendall tower in Arizona (0.48). These
sites had mean annual soil moisture levels that were less than 15%.

As expected, leaf area index was highly correlated with latent heat
fluxes for most forest and cropland sites. LAI also accounted for much
of the variance of LE in biomes where Rnet was not a dominant
controller (e.g., grasslands and savannas). For example the correlation
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coefficient of LE vs. LAI was 0.77 at the Tonzi savanna and 0.84 at the
Vaira grassland. Soil moisture alone was not significantly correlated
with LE at many sites, with a few exceptions. Figs. 1 and 2 show that α
inverted directly from the observations was correlated with LAI and/
or soil moisture at several sites.
a

b

e

f

Fig. 2. Monthly Priestley–Taylor α coefficients vs. LAI and soil moisture at the site level f
3.2. Available energy

The seasonal cycle of remote sensing-derived Rnet agreed reason-
ably well with field-based Rnet measurements at representative
towers (Fig. 3). These estimates were constructed using GOES S↓
c

d

g

h

or (a, b) Morgan Monroe, (c, d) Blodgett, (e, f) Tonzi, and (g, h) Walnut River sites.



a b

dc

Fig. 3. Seasonal net radiation (24 hour means) from the tower measurements, MODIS, and CERES satellite observations during 2003 for (a) Morgan Monroe, (b) Blodgett, (c) Tonzi,
and (d) Walnut River. MODIS net radiation was estimated using GOES incoming solar and MODIS albedo for the the shortwave radiation and MODIS LST/emissivity, GOES cloud
fraction, PRISM near surface temperature and tower near surface vapor pressure for the longwave radiation.
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and MODIS albedo for shortwave radiation, MODIS land surface
temperature and emissivity for L↑, and PRISM near surface temper-
ature and GOES cloud fractions and tower water vapor pressure for L↓.
Over all sites, the estimated monthly Rnet also agreed well with the
tower measurements, with a correlation coefficient of 0.84, though
there was a bias of 22 Wm−2 (Fig. 4a and Table 3). The coarser
resolution CERES monthly surface Rnet also agreed well with the field
measurements (Fig. 4a). The CERES Rnet was systematically higher
than the tower measurements (Fig. 4a), though the bias (8 Wm−2)
was less than that of the MODIS-based estimate.

Monthly shortwave (SW) net radiation from bothMODIS and CERES
were correlated with the tower measurements, with correlation
coefficients around 0.75 and RMSEs around 32Wm−2, and a high
bias (Table 3). The two satellite-derived net SW data sets agreed better
with each other (r=0.94, RMSE=17.9 Wm−2) than with the tower
measurements, though MODIS had a high bias of 9 Wm−2 compared
with CERES. A further analysis of the radiation components showed that
the GOES S↓, which we used to derive MODIS SW radiation, had a high
bias of 11Wm−2 compared with CERES S↓, although they were highly
correlated (r=0.93).We thus adjustedGOES S↓ based on the regression
of CERES S↓ against GOES S↓ (Sadj↓ =−14.36+1.02 S↓).

The near surface vapor pressure had a large impact on L↓ and thus
Rnet across all sites. L↓ estimated with tower measured 2 m air
temperature and the near surface vapor pressure derived from tower
humidity was highly correlated with tower measured L↓ (r=0.83,
RMSE=23 Wm−2 and bias=12 Wm−2). For regional estimates, we
used the PRISM air temperature and near surface vapor pressure from
NCEP reanalysis, which introduced additional errors. The correlation
coefficient was reduced to 0.51 and bias increased to 15 Wm−2

(Table 3). Overall, the correlation between MODIS and CERES L↓ was
significant and the bias among them was small.

Outgoing longwave radiation L↑ estimated with MODIS land
surface temperature and emissivity closely matched the field
measurements (r=0.80, RMSE=24 Wm−2, bias=−3 Wm−2).
When compared with the tower measurements, CERES L↑ had similar
statistics (r=0.77, RMSE=26 Wm−2, bias=0.3 Wm−2). Compared
with CERES, the MODIS L↑ had a low bias of −7 Wm−2 with a
correlation coefficient of 0.92. Based on this and the limitation that
MODIS LST was retrieved only under clear sky conditions, we applied
an adjustment to MODIS L↑ with an intercept of 33.62 and a slope of
0.93. We then calculated the Rnet with the adjusted S↓ and the
adjusted L↓ for the regional estimates presented below in Section 3.4.
The bias from the adjusted MODIS Rnet was reduced to −0.7 Wm−2

and correlation was increased to 0.76 compared with CERES Rnet

(Fig. 4b). The bias was reduced from 25 to 6 Wm−2, and RMSE was
reduced from 44 to 31 Wm−2 as compared with Rnet from the tower
measurements.

From our optimization of ground heat fluxes using Eq. (6), we
found that monthly G was approximately equal to 10% of Rnet in low
LAI ecosystems, and 5% in forest ecosystems at monthly time step.
These estimates are probably adequate for use in temperate
ecosystems that undergo large seasonal changes in temperature and
solar radiation, but may be inappropriate for use in other biomes. The
semi-empirical method captured the seasonal cycle of ground heat
flux. There were some discrepancies between our model estimates of
ground heat flux and field measurements. However, the ground heat
flux is only a small fraction of Rnet at a monthly time scale, and this
probably did not introduce substantial errors in our estimates of
available energy.

3.3. Optimization of the PT α coefficient

3.3.1. Site-based optimization
Fig. 1 shows that the model-predicted α had a similar seasonal

pattern to the α obtained from a direct inversion of the monthly
observations. Savanna and deciduous broadleaf forest sites experienced



Fig. 4. Monthly net radiation from MODIS and CERES satellite observations, compared with the field observations over AmeriFlux tower sites during 2003 and 2004. MODIS net
radiation was estimated with tower near surface vapor pressure for incoming longwave radiation in top panel, and was estimated with NCEP reanalysis vapor pressure and adjusted
based on CERES incoming and outgoing longwave radiation in the bottom panel.
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the largest change of α over the year, while the amplitude of α at the
Blodgett needleleaf forest and Walnut River grassland sites was much
smaller. Similarly, predicted latent heat fluxes agreed reasonably well
with observations at all 4 sites. Fig. 5 shows that for the site-based
optimization, model estimates of α and LE reproduced much of the
observed variability at a monthly time scale over all 27 AmeriFlux sites.
The agreements between the predictions and the observations were
better for the annual mean. Table 4 showed that the RMSE of predicted
LE from site-based optimization ranges from 5Wm−2 at the Kendall
Grassland site (26 monthly observations) to 22Wm−2 at the Fermi
agriculture site (15 monthly observations). The predicted LE from the
site-based α optimization was more strongly correlated with the
observed LE than predictions with time-invariant α, especially over
savannas and grasslands (Table 4). Comparedwith the time-invariantα,
the average RMSEof predictedmonthly LEdecreased from15Wm−2 to
12Wm−2, and the Taylor score increased from 0.70 to 0.84 across all
sites.

3.3.2. Plant functional type-based optimization
The Taylor scores for predicted LE decreased slightly from 0.84 to

0.79 when we performed the optimization for four different biome
types, and the RMSE increased on average from 12 Wm−2 to



Table 3
Comparison of radiation components between tower measurements and radiation estimates derived from MODIS and CERES satellite observations.

SWin SWout SWnet LWin LWin0 LWout LWnet Rnet Rnet0 Rnet_adj

MODIS vs. Tower
RMSE 37.6 16.4 34.3 37.3 23.3 24.3 31.4 44.4 30.8 30.5
Bias 3.0 −5.7 7.4 15.1 12.4 −2.7 17.8 25.3 22.1 6.2
Corr 0.76 0.54 0.75 0.51 0.83 0.80 0.42 0.57 0.84 0.56

CERES vs. Tower
RMSE 36.1 20.3 32.0 31.9 25.6 22.0 36.2
Bias −3.7 −7.6 3.8 6.0 0.3 5.7 8.1
Corr 0.79 0.48 0.78 0.61 0.77 0.65 0.64

MODIS vs. CERES
RMSE 22.1 12.6 17.9 27.0 29.3 16.1 26.3 35.5 29.8 27.1
Bias 10.8 2.1 8.7 0.3 −4.8 −7.3 7.6 16.3 11.2 −0.7
Corr 0.93 0.37 0.94 0.68 0.55 0.92 0.11 0.67 0.62 0.76

SWout was calculated with MODIS albedo and GOES incoming solar radiation.
LWin0: Incoming longwave radiation using tower vapor pressure instead of NCEP reanalysis near vapor pressure.
Rnet0: Total net radiation with LWin0.
Rnet_adj: Adjusted MODIS based net radiation used for our regional ET estimate. Specifically the biases in incoming shortwave and outgoing longwave radiation were adjusted based
on CERES radiation components.
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17 Wm−2 (Table 4). The biggest RMSE increases occurred in
grasslands, for example, from 5 to 16 Wm−2 at the Kendall grassland
site. The performance of the PFT-based prediction was still better than
the predictions by time-invariant site-specific α, as shown by the
higher correlation coefficients and Taylor scores. Table 5 shows the
parameters derived from the optimization of Eq. (7) for the 4 different
plant functional types. Croplands had the largest maximum α of
around 1.2, followed by grassland/savannas/shrubland, while forests
had lower α in general (Fig. S2). LAI affected ET in all biome types and
α increased as a function of LAI when LAI was less than 1 for non-
forest biomes. ET was very sensitive to soil moisture when VSM is less
a

c

Fig. 5. Scatterplot of predicted Priestley–Taylor α coefficients (a, b) and LE (c, d) from the s
2006. (a) and (c) are for multi-year monthly values while (b) and (d) are for multi-year an
than 0.25 for all biomes, and ET for forests was not dependent on
moisture at higher levels of VSM.
3.3.3. Global optimization
Many sites showed a small reduction in model performance or no

significant change for the global optimization relative to the PFT
optimization (Table 4). Several sites showed moderate reductions
including the Metolius Intermediate Pine and the Tonzi savanna sites.
On average, the Taylor scores decreased from 0.79 to 0.75. LAI did not
influence α strongly except when/where LAI was much less than one.
b

d

ite-based optimization vs. tower measurements over 27 AmeriFlux sites from 2001 to
nual means.



Table 4
Statistics of comparison between monthly latent heat and those predicted from four sets of Priestley–Taylor optimizations.a

Site name Code Nobs RMSEa Correlation Biasa Taylor score

Fb Sitec PFTc Gc Fb Sitec PFTc Gc Fb Sitec PFTc Gc Fb Sitec PFTc Gc

Duke Hardwoods a 31 11 11 9 13 0.95 0.95 0.97 0.94 1.0 1.4 −3.4 1.6 0.89 0.89 0.95 0.87
Missouri Ozark b 22 20 19 16 18 0.87 0.88 0.93 0.91 0.3 3.2 −2.5 3.5 0.75 0.79 0.86 0.83
Morgan Monroe c 24 18 13 14 18 0.92 0.96 0.95 0.91 3.9 2.7 −0.8 5.8 0.80 0.92 0.88 0.81
Bartlett d 14 9 11 21 27 0.96 0.96 0.98 0.96 2.3 −2.7 18.1 24.6 0.89 0.83 0.89 0.86
Willow Creek e 63 14 9 15 22 0.91 0.96 0.95 0.89 2.8 0.9 8.2 13.3 0.78 0.92 0.87 0.76

North Carolina LP f 19 12 13 19 22 0.95 0.95 0.94 0.93 −1.0 2.6 −12.6 −16.9 0.91 0.91 0.88 0.87
North Carolina CC g 19 13 13 14 17 0.93 0.94 0.93 0.92 0.2 2.9 −5.5 −9.4 0.86 0.88 0.87 0.84
Sylvania Wilderness h 43 12 11 1 12 0.88 0.92 0.90 0.85 −0.7 3.7 1.8 1.2 0.75 0.84 0.81 0.74

Duke Forest Pine i 51 13 10 10 10 0.92 0.95 0.96 0.96 −1.3 2.4 −0.4 −2.6 0.85 0.91 0.93 0.92
Blodgett j 62 11 13 16 18 0.95 0.94 0.90 0.87 −0.5 3.0 1.5 −2.5 0.92 0.89 0.82 0.77
Metolius Intermediate k 40 14 17 12 20 0.81 0.89 0.88 0.71 −2.7 −4.2 −7.7 −15.1 0.78 0.66 0.78 0.53
Wind River l 38 10 12 30 27 0.92 0.90 0.90 0.91 −3.7 3.3 17.6 16.9 0.78 0.71 0.47 0.53

Tonzi m 59 24 8 17 19 0.39 0.95 0.88 0.81 −2.6 2.3 12.0 12.0 0.19 0.92 0.77 0.67
Toledo n 15 23 16 24 23 0.81 0.95 0.83 0.83 1.5 5.7 −7.3 −7.0 0.59 0.89 0.63 0.64

Audubon o 14 13 5 10 10 0.75 0.96 0.85 0.85 0.7 −0.2 −0.3 0.1 0.45 0.92 0.74 0.73
Kendall Grasslands p 26 16 5 16 15 0.38 0.96 0.90 0.90 −0.4 1.1 −13.1 −12.9 0.13 0.93 0.76 0.80
Goodwin Creek q 41 10 11 22 18 0.94 0.94 0.86 0.86 −1.1 3.8 7.9 1.9 0.89 0.88 0.69 0.73
ARM SGP Control r 12 17 7 16 17 0.83 0.98 0.96 0.96 0.8 0.2 −4.3 −6.4 0.63 0.96 0.86 0.84
ARM SGP Burn s 16 17 9 15 15 0.92 0.97 0.95 0.95 2.6 −0.1 5.2 1.3 0.78 0.95 0.88 0.86
Walnut River t 33 9 11 22 16 0.96 0.95 0.95 0.97 −0.4 2.5 14.7 10.0 0.93 0.90 0.84 0.90
Vaira u 40 33 11 16 17 −0.14 0.93 0.78 0.72 −10.9 −1.2 −4.3 −4.2 0.01 0.85 0.56 0.50
Fermi Prairie v 20 15 15 19 15 0.93 0.94 0.92 0.93 1.1 3.7 8.3 3.7 0.87 0.88 0.86 0.88
Brookings w 13 18 17 28 34 0.90 0.93 0.92 0.92 −1.0 2.9 −19.6 −26.6 0.82 0.86 0.83 0.77
Fort Peck x 12 10 9 18 20 0.74 0.73 0.83 0.83 −4.4 −2.7 −5.7 −7.8 0.52 0.54 0.66 0.62

ARM SGP Main y 40 16 18 18 21 0.72 0.81 0.81 0.77 −3.2 6.5 6.4 9.9 0.55 0.61 0.61 0.54
Bondville z 37 16 16 16 16 0.88 0.89 0.89 0.87 0.1 4.9 −6.3 −3.9 0.76 0.80 0.80 0.77
Fermi Agriculture 0 15 16 22 16 16 0.89 0.83 0.91 0.90 0.3 1.4 −2.6 −1.6 0.81 0.70 0.82 0.81

Average 15 12 17 18 0.81 0.92 0.90 0.88 −0.6 1.9 0.2 −0.4 0.70 0.84 0.79 0.75

a Root-mean-square-error (RMSE) and bias in W m−2 for latent heat flux, correlation, and Taylor score are derived from monthly AmeriFlux data from 2001 to 2006.
b F, one time-invariant Priestley–Talyor α value optimized for each site as shown in Eq. (1).
c Site, PFT, and G represent the optimizations of α for the site-based, plant functional type-based (PFT-based), and global-based optimizations, respectively. αwas parameterized

as a function of LAI and soil moisture as shown in Eq. (7).
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Soil moisture influenced α significantly when VSMwas below 0.25 on
a global scale.
3.4. Improvement of ET estimates in the CASA biogeochemical model

3.4.1. Comparison of original and new CASA ET
The seasonal cycle of soil moisture estimated by CASAwas similar to

that from the field measurements at the Tonzi site from 2003 to 2005
(Fig. 6). The new version improved the prediction of soilmoisture for all
years. Themodel captured the seasonality of ET asmeasured in thefield.
The modeled LE was higher than the observations before May, due to a
positive bias in Rnet (Fig. 6d). The largest difference occurred duringMay
and June, when there was a lag between the decrease of α predicted by
Table 5
Coefficients derived from plant functional type-based (PFT), and global-based
optimization (global) of Eq. (7).

Plant Function Type (PFT) PFT-based optimization

a1 b1 c1 d1

Broadleaf forest 0.93 0.78 0.00 15.00
Needleleaf/mixed forest 1.08 1.07 0.00 8.36
Grassland, shrubland and savanna 1.17 5.50 0.30 7.70
Cropland 1.22 3.48 0.00 5.52

Global optimization

a1 b1 c1 d1

All except cropland 0.94 5.53 0.00 10.26

We set the maximum of a1 to be 2.0, and the maximum values for b1, c1, and d1 to be
15.0.
themodel. Overall, the ET predicted by themodel agreedbetter than the
ET simulated by the original version of CASA, as shown in the Taylor
diagrams (Fig. 7a, b). Table S1 shows that the Taylor score increased
from 0.68 to 0.73 on average compared with the original CASA over all
34 sites. Similarly, the mean bias was reduced from 6.6 mmmon−1 to
0.8 mm mon−1. Most of these improvements in correlation and
reduction in bias were a result of our use of our new estimates of LE
derived from the remote sensing observations. Additional model
simulations in which we used the new soil parameterizations (Bonan,
1996; Yang et al., 1998) and the original Thornwaite-based ET showed
little or no overall improvement (data not shown).

3.4.2. Validation of new CASA ET over 7 sites
The 7 AmeriFlux sites not used for the optimization due to lack of soil

moisture measurements were used to validate the modified CASA ET
algorithm. ThenewCASAET captured the seasonality of ET, i.e., it captured
the decrease of ET fromMay to June atMize for each year, better than the
old version (Fig. S3). The RMSE and Taylor scorewere 25 mmmon−1 and
0.7, respectively, averaged over these validation sites (Table S1). The
performance of our algorithm was also better than the MODIS (MOD16)
ET product (Taylor score of 0.64) (Table S1, Fig. 7c and Fig. S3).

3.4.3. Validation at large spatial scales
We applied the approach presented in Section 2.4 to CONUS to

estimate ET from 2006 to 2008 at 1 km resolution. Our basin scale
monthly ET estimates averaged over the Mississippi River basin (with a
total drainage area of 3.21 million km2) from 2006 to 2008 showed a
strong seasonal pattern, ranging from 0 in January to 3.1 mm/day in
June/July (Fig. 8a). Both the seasonality and magnitude were similar to
the basin scale ET results obtained by Rodell et al. (2004). In Rodell et al.
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c d

Fig. 6. Time series of (a) monthly evapotranspiration (ET), (b) volumetric soil moisture (VSM), and (c) the Priestley–Taylor (PT) α simulated by CASA biogeochemical model with the
improved ET algorithm, and (d) satellite-derived net radiation (Rnet) at the Tonzi Savanna site from 2003 to 2005. The parameters used here for αwere derived from an optimization
of α inverted with tower-measured LE and MODIS-derived available energy. Tower measurements are shown in solid dot for comparison.
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(2004), ET was calculated as the residual of total precipitation, the net
stream flow from river discharge measurements, and the change in
terrestrial water storage derived from Gravity Recovery and Climate
Experiment (GRACE) satellite measurements during 2002–2003.

We calculated runoff as a residual between precipitation and ET,
assuming there was no significant change in terrestrial water storage
over a three year period. Our runoff estimate was 989 km3yr−1 for
the Mississippi River basin from 2006 to 2008, which was similar to
918 km3yr−1 from MOD16, and higher than the historical gauge-
based estimate of 513 km3yr−1 by Perry et al. (1996). The runoff from
Fisher et al. (2008) was much smaller, averaging 216 km3yr−1 during
1986–1993. We calculated the runoff based on the USGS gauge
observations at Vicksburg, Mississippi (07289000) in 2008, using the
algorithm from (Maurer & Lettenmaier, 2001). The algorithm
included an extrapolation based on the drainage areas. The estimated
runoff in 2008 was 846 km3yr−1. The runoff from the CASA ET
estimate in 2008 was 1034 km3yr−1.

Runoff from the Mississippi River basin was positive in fall and
winter, declined from February/March until summer, when ET
exceeded precipitation (Fig. 8b). Our precipitation minus ET (P–ET)
averaged over the Mississippi River basin ranged from −1.1 mm/day
in July to 2.2 mm/day in winter. Mean annual P–ET was 0.78 mm/day.
P–ET derived from GRACE storage and GPCP precipitation combined
with river discharge data in the Mississippi River basin showed a
similar seasonal pattern and an average P–ET of 0.49 mm/day for 2002
and 2003 (Swenson & Wahr, 2006). The derived monthly runoff from
the Vicksburg station in 2008 also had a strong seasonal pattern, with
a minimum of 0.27 mm/day in November and a maximum of
1.56 mm/day in April, and a mean annual rate of 0.72 mm/day.

The 2006–2008 runoff for the Columbia River basin based on
PRISM precipitation and our ET estimates was 261 km3yr−1, which
compared reasonably with 235 km3yr−1 derived from the historical
gauge measurements (Perry et al., 1996), and was similar with
263 km3yr−1 from MOD16 (Mu et al., 2007).

4. Discussion

4.1. Spatial distribution of ET and its controlling factors

The spatial pattern of ET followed those of Rnet and α at a conti-
nental scale, i.e., a decreasing trend from southeast to northwest and
relatively high values in the northwest coastal areas (Fig. 9). We
summarized the mean annual ET during 2006–2008 as a function of
land cover type in Table 6 (see Fig. S4 for the land cover map from Friedl
et al. (2002)). Evergreen broadleaf forests had the highest mean annual
ET (840±234mm yr−1), while shrublands (231±123mm yr−1) and
barren or sparsely vegetated areas (110±76mm yr−1) were lower. Rnet
decreased from 125±9Wm−2 in evergreen broadleaf forests to 54±
15Wm−2 in shrublands, and 39±16Wm−2 in deserts. The relative
change of Rnet among land cover types was much smaller than that of
ET. The lower PT coefficient due to lower leaf area index and soil water
content contributed further to the decreasing ET with decreasing
vegetation cover. Mean annual α ranged from 0.72 (±0.20) in broadleaf
forest, 0.45 (±0.15) in shrublands, to 0.36 (±0.11) in barren areas.

ET followed the pattern of precipitation on a large scale (Fig. 10a). ET
increased linearly with precipitation to a mean annual precipitation
(MAP) of ~900 mm yr−1, reaching amaximumof 672mm yr−1 at aMAP
of ~1450 mm yr−1. ET decreased at higher precipitation, probably as a
consequence of increased cloud cover and lower radiation (Fig. 10b).
Mean annual Rnet increased with precipitation gradually from 44 to
96Wm−2 at aMAPof ~1400 mm yr−1, decreased to 78Wm−2 at aMAP
of ~1600 mm yr−1, and stayed almost constant around 78Wm−2 above
1600 mm yr−1 (Fig. 10b). The α coefficient increased rapidly with
precipitation until MAP reached 400 mm yr−1 (Fig. 10c). α was the
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Fig. 8. Time series of basin-scale monthly precipitation (solid dots) and evapotrans-
piration (open circles) (a), and precipitation minus ET rate (b) for the Mississippi River
basin from 2006 to 2008.
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main driver for the spatial variation of ET when MAP is below
400mm yr−1, with a correlation coefficient of 0.81. Rnet was less well
correlatedwith ET (r=0.52). Rnet was themain driver (r=0.86) for areas
withMAP greater than 400 mm yr−1.Mean annual runoff increasedwith
increasing precipitation (Fig. 10d). This is consistent with the theory of
supply and demand for water (Budyko, 1974; Federer, 1982) where ET is
limited by the supply of water from the roots or by atmospheric water
demand (PET, primarily driven by radiation). When there is limited
supply of soil moisture, ET is modulated significantly by available water
and canopy characteristics (Baldocchi & Xu, 2007; Ryu et al., 2008). In
contrast, over areas or during periods with an unlimited soil moisture, ET
is more closely regulated by the energy available to drive evaporation
(Jarvis & Mcnaughton, 1986; Ryu et al., 2008).
Fig. 7. Taylor diagram for ET over 27 optimization sites (a to z, 0) and 7 validation sites (1
to 7) from(a) the improvedCASAET algorithm(b) the original CASAET algorithm, and (c)
MOD16. The radial distance fromthe origin is proportional to the standard deviation of the
estimate normalized by the standard deviation of the observations, the azimuthal position
gives the correlation coefficient, and the radial distance from the reference point is
proportional to the centered RMSE difference between the modeled and observed time
series normalized by the reference standard deviation. Data used here are from 2006 to
2008.



Fig. 9. Spatial distribution of annual mean monthly (a) precipitation, (b) MODIS-derived net radiation, (c) the Priestley–Taylor α coefficient, and (d) ET from improved CASA model,
averaged from 2006 to 2008 across the conterminous United States.
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4.2. Interannual variation

Barren or sparsely vegetated areas showed the largest interannual
variation in ET among vegetation types during 2006 and 2008, with a
standard deviation around 10% of the mean value (Table 6). Rnet varied
by ~7%, and PT α varied by 2% in these areas. Spatially, southern Texas
and southern California experienced the largest interannual variation in
ET (~20%ofmeanET),where PT coefficient varied bymore than 15%and
Rnet only varied by a few percent. Interannual variation of ET in desert
ecosystems also varied substantially. Interannual variability in Rnet in
the Marine ecoregion (Fig. S4) also was large (around 7%), and the PT
coefficient variation further amplified the interannual variation in ET to
around 10% (Table S2). The majority of the eastern US showed little
interannnual variation in ET, Rnet, and α.

4.3. Ecophysiological basis for parameterization of the PT α coefficient

Evapotranspiration is controlled by both climatic and biological
processes. The coupling between climate and ecosystems complicates
the analysis of the mechanisms controlling ET. The relative impor-
tance of factors such as available energy, soil moisture supply,
ecological and physiological control by plants, and the demand by
the atmosphere, varies across ecosystems. The competing role of these
factors makes the estimate of ET at regional or global scales
challenging. According to the Omega theory (Jarvis & Mcnaughton,
1986), ET is proportional to equilibrium ET (which is a function of
available energy) and is relatively independent of surface control over
well-watered or aerodynamically-smooth vegetation. In contrast, tall
vegetation like forests is more coupled to the atmosphere and ET is
controlled more by vegetation characteristics.

We hypothesize that available energy is the first order controller of
ET and the functional and environmental variables are of secondary
importance. At the leaf level, stomatal conductance is reduced when
soil moisture is limited. At the canopy level, vegetation structure,
including LAI, responds to temperature and precipitation, which in
turn affects actual ET. Our method did not model surface resistance
directly; instead, it was implicitly considered during the optimization
of the PT α coefficient as a function of LAI and soil moisture. We
further hypothesize that LAI responds to soil drought and stomatal
closure in a way that is consistent with plants under stress adjusting
their leaf density to optimize their resource utilization (Field et al.,
1995).

Our analysis shows that soil moisture in some cases explains
additional variance in ET beyond LAI, and thus an explicit function of
soil moisture is useful in parameterizing moisture controls on ET. This
approach is complementary to VPD-based approaches (Mu et al.,



Fig. 10. Relationship between ET, Rnet, the Priestley–Taylor α coefficient, and runoff with precipitation averaged from 2006 to 2008 across the conterminous United States.

2316 Y. Jin et al. / Remote Sensing of Environment 115 (2011) 2302–2319
2007), and may be of use when VPD information is unavailable. We
assume that soil moisture is linked to and reflects the evaporative
demand of the atmosphere, especially at midday when convection is
the strongest due to strong vertical mixing.

The exponential LAI term in Eq. (7) accounts for potential non-
linearities between LAI and α (and also ET) and has the effect of
causing α to level off at high LAI values. We did another two sets of
optimization (linear and exponential) using MODIS EVI (but with the
same factor for representing soil moisture stress) over the 27 primary
sites used in our analysis, and found the EVI-based optimizations had
slightly lower Taylor scores of 0.78 (for the linearmodel) and 0.77 (for
an exponential model). Thus, although ET is more linearly related to
VIs (Choudhury et al., 1994; Glenn et al., 2010), our optimization with
LAI yielded comparable results.
Table 6
Mean ET, Rnet, Priestley–Taylor α, and precipitation and their interannual variability (IAV)

Mean±STD

Area ET Rnet

(km2) (mm yr−1) (W m−2)

Evergreen Needleleaf Forest 502,617 370±169 79±13
Evergreen Broadleaf Forest 23,351 840±234 125±9
Deciduous Needleleaf Forest 3222 271±158 73±20
Deciduous Broadleaf Forest 546,330 474±108 76±11
Mixed Forests 498,751 696±238 90±22
Shrublands 931,985 231±123 54±15
Savannas and Grasslands 2,529,156 391±176 64±22
Croplands 2,480,986 574±195 73±19
Barren or Sparsely Vegetated 83,732 110±76 39±16

CONUS 7,600,130 454±191 69±21
4.4. ET and runoff at a continental river basin scale

Our understanding and quantification of water budget in both
atmosphere and terrestrial biosphere is limited by a lack of observa-
tional data and by inadequate parameterizations of the underlying
physics in hydrology models. ET is considered the most uncertain
component in water budget (Lettenmaier & Famiglietti, 2006). At basin
to continental scales, runoff has been mostly derived from gauge-based
river discharge observations, model simulations, atmospheric moisture
budgets (from reanalysis), and from GRACE satellite measurements,
either alone or combined with other measurements described above
(Rodell et al., 2004). On interannual time scales, precipitation minus ET
over land can be used as a proxy for runoff, assuming negligible storage
changes. Our approach for estimating regional ET has potential
averaged over different vegetation types in the conterminous United States (CONUS).

IAV (2006~2008)

α Precip ET Rnet α Precip
(mm yr−1) (% of mean)

0.5±0.2 1078±642 9.3 5.8 3.5 11.3
0.7±0.2 1168±184 5.0 4.3 1.4 5.7
0.3±0.1 859±363 4.8 2.9 1.8 1.9
0.5±0.1 1057±190 3.1 2.5 1.1 6.4
0.7±0.2 1086±301 3.9 3.7 0.4 6.0
0.5±0.1 295±185 1.0 2.9 0.7 1.9
0.6±0.1 546±306 4.7 4.2 1.1 5.7
0.7±0.2 892±269 3.4 2.6 2.6 4.5
0.4±0.1 157±184 9.6 7.4 2.3 5.5

0.6±0.2 733±420 4.0 3.5 1.6 5.3
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applications for runoff estimates by integrating satellite data and eddy-
covariance measurements. The value of MODIS derived ET is likely to
increase in the future, with longer time series reducing uncertainties
associated with year-to-year changes in water storage. However, water
storage change may still be a significant term in some areas where
ground aquifers are being rapidly depleted (e.g., Rodell et al.,2009) thus
requiring multi-faceted approaches for closing the water budget that
draw upon multiple data streams.

5. Conclusions

We estimated regional net radiation at 1 km by 1 km resolution
using satellite observations including MODIS surface albedo and land
surface temperature and GOES incoming solar radiation. Good
agreement was found between satellite-based estimates of monthly
net radiation (Rnet) and field-measured Rnet, with a RMSE of less than
30 Wm−2.

We developed an empirical ET algorithm using AmeriFlux data and
MODIS LAI to improve the estimation of ET and thus soil moisture in
the CASA biogeochemical model at a regional scale. The coefficient α
in the semi-empirical Priestley–Taylor (PT) ET approach was
parameterized with leaf area index and soil moisture at a monthly
time step using observations from 27 AmeriFlux sites. The optimization
at a PFT level performed well with a RMSE of 16Wm−2 for predicted
monthly LE, a correlation of 0.90 with tower measured LE, and a mean
Taylor score of 0.80 when averaged over all the optimization sites.

We implemented the PT-based ET algorithm in CASA, with soil
moisture simulated by CASA,MODIS LAI, and regional Rnet estimatedwith
satellite observations. The estimated seasonal ET agreed well with the
tower measurements. The RMSE was reduced from 27.1 mmmon−1

from the Thornwaite ET in the original version to 21.1 mmmon−1 with
our improved approach. The Taylor score increased from 0.68 to 0.73
averaged over all 27 optimization sites plus the 7 sites used for validation.
Mean biases also were reduced. Our ET algorithm performed better than
the current version of the MOD16 ET product for which RMSE was
26.5 mm/day and the Taylor score was 0.62.

The spatial distribution of our modeled mean annual ET at 1 km
resolution followed the patterns of vegetation distribution, Rnet and
precipitation. Our ET estimates ranged from 110 mm yr−1 in barren
or sparsely vegetated areas to 840 mm yr−1 in evergreen broadleaf
forest. The PT α coefficient was related to precipitationwhenMAPwas
less than 400 mm yr−1, and was the main driver for the spatial
variation of ET with a correlation of 0.81. Rnet was the main driver for
the spatial distribution of ET whenMAPwas higher than 400 mm. The
ET rate averaged over the Mississippi River basin varied from 0 in
January to 3.5 mm/day in June/July, in good agreement with the
results from Rodell et al. (2004) derived using GRACE satellite
measurements and river discharge. Runoff from theMississippi basins
was comparable with that from MOD16 ET data.

The sensitivity of LE to available energy plays an important role in
the response of surface temperature to increasing surface radiative
forcing. Our study showed that relative importance of available
energy and the PT α coefficient (regulated by LAI and soil moisture) in
controlling LE varied considerably across the CONUS. Our estimates
provide information for comparing and calibrating climate models in
terms of their sensitivity to available energy (Winter & Eltahir, 2010).
Drought affects photosynthesis and heterotrophic respiration inmany
ecosystems. An important next step is to extend our analysis to
quantify how the soil moisture affects net ecosystem CO2 exchange in
various ecosystems.
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