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Abstract. High temporal resolution information on burnt area is needed to improve fire behaviour and emissions
models. We used theModerate Resolution Imaging Spectroradiometer (MODIS) thermal anomaly and active fire product
(MO(Y)D14) as input to a kriging interpolation to derive continuousmaps of the timing of burnt area for 16 large wildland

fires. For each fire, parameters for the kriging model were defined using variogram analysis. The optimal number of
observations used to estimate a pixel’s time of burning varied between four and six among the fires studied. The median
standard error from kriging ranged between 0.80 and 3.56 days and themedian standard error from geolocation uncertainty

was between 0.34 and 2.72 days. For nine fires in the south-western US, the accuracy of the kriging model was assessed
using high spatial resolution daily fire perimeter data available from the US Forest Service. For these nine fires, we also
assessed the temporal reporting accuracy of the MODIS burnt area products (MCD45A1 andMCD64A1). Averaged over

the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared with
33% for MCD45A1 and 53% for MCD64A1. Systematic application of this algorithm to wildland fires in the future may
lead to new information about vegetation, climate and topographic controls on fire behaviour.
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Introduction

Landscape fires release large amounts of particulate matter and
trace gases into the atmosphere, and global estimates of carbon

emissions from fires range between 1500 and 3500 Tg carbon
per year (van derWerf et al. 2010). On a regional scale, wildfire
emissions affect air quality and air pollution, which can have
adverse effects on public health, especially when the wildfire

emissions disperse into densely populated areas (Cisneros et al.
2012; Johnston et al. 2012). Existing bottom-up inventories for
wildfire emissions traditionally assess emissions from indi-

vidual fires usingmaps of the final outer perimeter, average over
multiple fire perimeters in large areas (e.g. the Wildland Fire
Emission Information System, French et al. 2011) or have

coarse spatial resolutions (e.g. 0.58 in the Global Fire Emission
Database version 3 (GFED3), van der Werf et al. 2010). As a
consequence, these models may not be able to capture day-to-

day variation in weather and fuel moisture during fire events,
which in turn may bias estimates of combustion completeness
and emission factors (Boschetti et al. 2010; van Leeuwen and
van der Werf 2011), and propagate into larger emissions

uncertainties. For example, Mu et al. (2011) demonstrated that
refining the temporal resolution of GFED3 from monthly to
daily time intervals reduces uncertainties in modelling the

contribution of wildfire emissions to atmospheric trace gases.
Space-borne sensorswith short revisit times have been shown

to be well suited to providing temporal information on wildfire
occurrence and progression (Chuvieco andMartin 1994; Loboda

and Csiszar 2007; Mu et al. 2011). In particular, measurements
from satellites in geostationary and non-sun synchronous low
earth orbits have been used to study the diurnal pattern of

biomass burning (Prins et al. 1998; Giglio 2007). These studies
generally count the total number of fire pixels over large areas at
discrete time steps to assess the pattern of the diurnal fire cycle.

Although the short revisit time of geostationary satellites allows
high temporal detail for fire activity studies, the spatial resolu-
tion of these satellites is inadequate to monitor the evolution of

individual fire events. The Moderate Resolution Imaging Spec-
troradiometer (MODIS) has become one of the primary instru-
ments for moderate-resolution fire remote sensing since it was
launched on the Terra satellite in 1999 and on Aqua in 2002
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(Justice et al. 2002). At the equator, MODIS has four daily
overpasses: at 0130 hours (Aqua descending node), 1030 hours
(Terra descending node), 1330 hours (Aqua ascending node) and

2230 hours (Terra ascending node), local times. Owing to the
curvature of the earth, the number of MODIS acquisitions each
day at a specific location increases with latitude. Two types of

fire products are consistently generated and distributed from
MODIS. These are (1) the active fire products, which give the
location of the fire and fire radiative power when possible and

(2) the burnt area products, which provide information about the
spatial extent of burn scars (Justice et al. 2002). The active fire
algorithm is based primarily on the detection of an increase in
brightness temperatures in the MODIS 4- and 11-mm channels

when fires are active (Giglio et al. 2003; Giglio et al. 2006). The
standard MODIS burnt area product (Roy et al. 2002; Roy et al.
2005) makes use of post-fire reflectance changes in the near

infrared (NIR) and short-wave infrared (SWIR) spectral regions.
These reflectance changes are caused by the removal of vegeta-
tion and deposition of charcoal and ash by fire (Pereira et al.

1999; Trigg and Flasse 2001). In addition to spatial burn extent
information, the algorithm also provides the approximate day of
burning, with a nominal uncertainty of up to eight days (Roy

et al. 2005). Giglio et al. (2009) describe another MODIS burnt
area product that combines information on post-fire reflectance
changes in the NIR and SWIR spectral regions with active fire
detections in the thermal infrared region. Inclusion of active

fire information is planned for the MODIS Collection 6 burnt
area product (Giglio et al. 2009). As with the burnt area
product of Roy et al. (2005), the Giglio et al. (2009) product

also provides information on the day of burning.
Although temporal information on the day of burning has

been included in both the MODIS active fire and burnt area

products for many years, few studies have attempted to use this
information to derive data on fire progression at local to regional
scales (Loboda and Csiszar 2007; Thorsteinsson et al. 2011;
Kasischke and Hoy 2012). At these scales, fire progression

information can significantly enhance bottom-up estimates of
emissions (Boschetti et al. 2010;Mu et al. 2011) andmay enable
analysis of the sensitivity of fire spread rates to local environ-

mental conditions (e.g. wind speed, wind direction, relative
humidity, air temperature, topography and fuel types). In this
study we use kriging (Royle et al. 1981; Holdaway 1996), a

well-accepted interpolation technique, to retrieve fire progres-
sion maps at moderate resolution scale using MODIS active fire
data. We derive fire progression maps of selected large fires

spanning a range of vegetation and fuel types, topography and
weather. We compare our estimates of the time of burning with
high-resolution fire perimeter data extracted from night-time
airborne infrared acquisitions, and with the approximate day of

burning provided by the MODIS burnt area products of Roy
et al. (2005) and Giglio et al. (2009). The resulting fire
progression maps assign the burn date within the accuracy of a

single day to 73% of the pixels, noticeably outperforming
accuracy of the MODIS burnt area products.

Methods

Fires included in this study

In this study, we derived the progression of 16 large wildland
fires in the south-western US and Alaska (Fig. 1, Table 1). Nine

of these wildland fires were selected because of the availability
of high-resolution daily fire perimeter data derived from night-
time airborne infrared imagery archived by the US Forest

Service. Those nine fires, ranging between 3000 and 240 000 ha,
were in California, Arizona, New Mexico and Colorado
(Fig. 1b) and occurred between 2007 and 2012 (Table 1). We

also generated progression maps for seven large fires in Alaska
(Fig. 1c) with fire size ranging between 139 000 and 229 000 ha.
Final perimeters for the Alaskan fires were available from the

Alaska Large Fire Database, although daily fire perimeter data
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Fig. 1. Distribution of 16 large wildland fires analysed in this study.

(a) Overviewmap. Fire perimeters are from the United States Forest Service

(b) and the Alaska Large Fire Database (c). For detailed information on each

individual fire numbered from 1 to 16 in (b) and (c), refer to Table 1.
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were not available. In higher latitudes, the number of MODIS
acquisitions per day increases, which allowed for a comple-
mentary analysis of the uncertainties in the progression model.

Five of the Alaskan fires occurred in 2004 and the other two in
2009 (Table 1). We used the MODIS land cover type product
(MCD12Q1, Friedl et al. 2010) of the year before each fire with
the International Geosphere–Biosphere Program (IGBP) clas-

sification scheme to quantify pre-fire land cover conditions
(http://reverb.echo.nasa.gov, accessed 21 October 2013). We
combined the original land cover classes into between forest

(classes 1–5), shrubland (classes 6–7), savanna–grassland
(classes 8–10) and other aggregated vegetation types (classes
11–16). The fires in our analysis occurred in many of these

vegetation types (Table 1).

Daily fire perimeter data

Daily perimeter data from the fires in the south-west were

obtained from the National Interagency Fire Center (ftp://ftp.
nifc.gov, accessed 21 October 2013). Trained ground fire
personnel created these fire perimeter data by manually inter-
preting and digitising high resolution (1m with sub-pixel geo-

location accuracy) night-time infrared imagery from the USFS
National Infrared Operations (NIROPS, http://nirops.fs.fed.us/,
accessed 21 October 2013) in which the active fire front is

visible. The acquisition time of the infrared imagery was mostly
close to midnight (between 2200 and 0200 hours), but did vary
more in some cases. The temporal uncertainty introduced

from the different sampling intervals of the night-time infrared

imagery is likely to be small as fire spread rates and fire acti-
vity are significantly lower during the night compared with
during the day (Prins et al. 1998; Giglio 2007;Mu et al. 2011). In

a final step, the daily fire perimeter vector data were used to
construct a single map of daily fire progression. As described
below, these observations were used to validate the fire pro-
gression model we developed using MODIS active fire data and

to compare with estimates from available global-scale MODIS
burnt area products.

MODIS active fire data

We used the timing and locations of the Terra and Aqua thermal
anomalies and fire 5-min (1-km) products (MOD14 and

MYD14) to construct the fire progression model (http://reverb.
echo.nasa.gov, accessed 21 October 2013). The MODIS active
fire data were extracted to cover each of the fire perimeters from
1 month before until 1 month after the respective start and end

dates of each individual fire as defined using the USFS obser-
vation described above. The MOD14 and MYD14 products are
based on a contextual active fire detection algorithm that

exploits the strong emission in the mid infrared spectral region
from fires (Giglio et al. 2003, 2006). Active fire pixels are
categorised as having low, medium or high confidence levels of

fire detection. We used all confidence levels in our study.

MODIS burnt area products

We compared the daily progression observations with the dates

of burning reported by two types ofMODIS burnt area products,

Table 1. Large wildland fires analysed in this study

The perimeters of individual fires are shown in Fig. 1. The fires in the table are ordered alphabetically per region. The forest (classes 1–5), shrubland (classes

6–7), savanna–grassland (class 10) and other (classes 11–16) land cover types refer to aggregated classes of the International Geosphere–Biosphere Program

(IGBP) vegetation classification from theMCD12Q1 land cover type product (Friedl et al. 2010) acquired for the year before each fire. In ‘Missing days in daily

fire perimeter data’, dashes indicate that there were no missing days. Note that for savanna–grassland theMCD12Q1 product has difficulties in discriminating

between open forest, shrubland and savanna (http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/displayCase.cgi?esdt=MCD12andcaseNum=PM_MC-

D12_11001andcaseLocation=cases_data, accessed 21 October 2013). For the fires in southern California the MCD12Q1 classification as savanna largely

corresponds with chaparral shrubland. Similarly, theMCD12Q1 classification as savanna in Alaska largely corresponds with an open taiga forest interspersed

with herbaceous tundra species and shrubs

Region State Size

(ha)

Year Days

of the year

Land cover types (%) Fire number

in Fig. 1

Missing days in daily

fire perimeter data

Fire name Forest Shrubland Savanna–grassland Other

South-west

Big Meadow CA 3001 2009 239–249 49 0 44 7 1 –

Gladiator AZ 6566 2012 135–145 8 53 39 0 2 –

Horseshoe AZ 90 269 2011 129–171 3 51 44 2 3 –

Little Sand CO 10 087 2012 145–184 99 0 1 0 4 181, 182, 184

Station CA 64 425 2009 239–261 9 24 66 1 5 –

Waldo Canyon CO 7390 2012 175–183 48 0 49 3 6 –

Wallow AZ–NM 217 742 2011 150–177 65 13 19 3 7 –

Whitewater Baldy NM 120 055 2012 135–172 42 25 31 2 8 –

Zaca CA 239 973 2007 186–238 8 21 71 0 9 206–208

Alaska

Boundary AK 226 847 2004 171–240 4 13 81 2 10 N/A

Dall City AK 205 247 2004 191–257 1 22 75 2 11 N/A

Little Black One AK 146 064 2009 174–220 23 13 63 1 12 N/A

Minto Flats South AK 228 577 2009 172–218 44 22 34 0 13 N/A

North Dag AK 180 104 2004 167–239 2 6 37 1 14 N/A

Pingo AK 169 429 2004 168–257 5 15 79 1 15 N/A

Wintertrail AK 139 012 2004 170–261 1 8 82 0 16 N/A
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both at 500-m resolution. The combined MODIS Terra and
Aquamonthly burnt area product (500m) (MCD45A1) was also

retrieved from the Reverb website (http://reverb.echo.nasa.gov,
accessed 21 October 2013) for all nine fires in the south-west
from at least 1 month before until at least 1 month after the fire
(with the temporal windowdefined by the day of the first and last

active fire observedwithin the final fire perimeter). This product
provides monthly gridded burnt area data. The algorithm is
based on the spectral and temporal changes in surface reflec-

tance that fires induce (Roy et al. 2005). A statistical measure is
applied on the NIR and SWIR reflectance changes to select
potential burnt pixels. Subsequently, a temporal constraint

eliminates temporary changes such as those due to shadow
effects, and an approximate day of burning is assigned to burnt
pixels. To incorporate uncertainties due to missing data (mostly
from cloudy observations) the approximate day of burning is

assigned with a nominal uncertainty of 8 days (Roy et al. 2005).
The combined MODIS Terra and Aqua direct broadcast

monthly burnt area product (500m) (MCD64A1) was also

obtained for all nine fires in the south-west from at least 1 month
before until at least 1 month after the fire (ftp://fuoco.geog.umd.
edu, accessed 21 October 2013). Similar to MCD45A1, this

product also applies thresholds on temporal changes in a burn-
sensitive vegetation index to detect areas burnt along with the
approximate day of burning (Giglio et al. 2009). In contrast to

MCD45A1, MCD64A1 incorporates cumulative active fire
maps to guide the selection of burnt and unburnt training
samples for the change detection algorithm (Giglio et al. 2009).

Modelling fire progression using kriging

Due to the curvature of the earth, the number of MODIS
acquisitions per day increases with latitude, and as a conse-
quence the temporal gaps between successive overpasses

become smaller with increasing latitude. However, due to cloud

and smoke cover, the timing and number of acquisitions, het-
erogeneity in fuel loads and weather-driven variations in fire
spread rates, the spatial pattern of the detected active fires within

a fire complex is discontinuous. We used ordinary kriging to
derive spatially continuous maps of the time of burning. Kriging
is a geostatistical interpolation technique that calculates values

at unknown locations based on a scattered set of known loca-
tions. The technique has been widely used to predict continuous
maps of a wide range of environmental variables (e.g. precipi-

tation, elevation, frost, air temperature) based on discontinuous
point data (e.g. Holdaway 1996; Schwendel et al. 2012). The
values at unknown locations are calculated based on a combi-
nation of the distance to the known locations and the spatial

arrangement of the known locations. A major advantage of
kriging comparedwith deterministic interpolationmethods such
as inverse distance weighting is that kriging allows the inter-

polation error to be quantified (Holdaway 1996). The spatial
arrangement of the known locations is quantified by fitting
variogram curves. A variogram describes the spatial variability

of a specific environmental variable and is modelled using the
range, sill and nugget parameters (Fig. 2). The range is the
distance after which the model flattens. This means that there is

no spatial autocorrelation effect beyond this distance. The value
at which the variogram model attains the range is called the sill.
The nugget is the value where the curve crosses the y-axis.
A nugget larger than zero means that observations at infinitely

small distances show a discontinuity.We fitted spherical models
for each fire separately to derive the range, sill and nugget as
input to the kriging interpolation. The variogram and spherical

curve fit for theWallow fire are shown in Fig. 2. The progression
maps were derived in fractional days from the MODIS active
fire data. The times of burning for all fire pixels identified by the

MO(Y)D14 product were overlaid on a georeferenced map
using the day and local time of the active fire detection. As such,
sub-daily estimates of time of burning were given by the kriging
method. We performed an additional analysis to determine the

number of observations (n) to be used to calculate the unknown
locations for each fire separately. We determined the final
number of observations included in the interpolation (n) as the

number at which the decrease in the median kriging error
became small and was less than 1% compared with the median
kriging error when nþ 1 observations were included. The kri-

ging interpolation was bound within the final fire perimeter and
the interpolated time of burningwas gridded at 500-m resolution
to facilitate comparison with the MCD45A1 and MCD64A1

products. We also performed an additional analysis to quantify
possible interpolation errors due to geolocation uncertainties in
the MO(Y)D14 product. Depending on fire temperature, only
1–10% of the pixel area has to experience an elevated temper-

ature in order to be detected using the active fire algorithm
(Giglio et al. 2003). Thus, the active fire front only takes up part
of the pixel area and can be located at any sub-pixel location.

However, the area of a pixel is nominally 1 km2 at nadir,
although it grows away from nadir as the product of the along-
scan (S) and along-track pixel dimension (T) (Ichoku and

Kaufman 2005). At the edge of a scene, at view zenith angles of
558, S is ,5 km and T is ,2 km (Ichoku and Kaufman 2005).
The sub-pixel location uncertainty of the fire location introduces
uncertainty in the krigingmodel.We calculated S and T for each
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Fig. 2. Example variogram of the 2011 Wallow fire in Arizona and New

Mexico. The semi-variance was calculated for different distance bins

(squares). A spherical model was used to describe and parameterise the

model. The range is the distance at which the model levels out. The semi-

variance value at which the variogram attains the range is called the sill. The

semi-variance value at which the variogram fit crosses the y-axis is called

the nugget (in the example of the Wallow fire, the nugget is 0 days2).
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fire pixel following the formulae of Ichoku and Kaufman (2005).
We then calculated the maximal possible geolocation error V on

the location active fire front as half the pixel diagonal
V ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

S2 þ T 2
p

=2. Then, we simulated 10 sets of geolocation
errors in x and y by multiplying V with values derived from a

normal distribution with a mean of zero and standard deviation
(s.d.) of one for each fire. These sets of geolocation errors were
added to the x and y coordinates of the MODIS active fire

observations.We then executed the kriging interpolation for each
different set of geolocation errors. For each fire, we used the per-
pixel s.d. of the 10 simulated progression maps as an indicator of

the potential interpolation error due potential geolocation errors.

Comparison of kriging, MCD45A1
and MCD64A1 with daily fire perimeter data

The kriging maps of daily fire progression for the nine south-
western fires were compared with the USFS data. The fire

perimeter data were registered in a Universal Transverse
Mercator grid with theWorld Geodetic System 1984 as geodetic
datum at 500-m resolution and the kriging maps were

co-registered to the same grid. To match the discrete day of the
year (DOY) values of the fire perimeter data, the decimal
output of the kriging results (local time, the conversion between
the Coordinated Universal Time and local time was based on

longitude) was floored to the nearest integer. The temporal
difference (days) was calculated between the kriging map and
the daily fire perimeter data for all pixels in the fire perimeter.

We also compared the daily burnt area from the kriging model
with the daily burnt area from the daily fire perimeter data. In a
similar fashion, the approximate day of burning and the daily

burnt area from the MCD45A1 and MCD64A1 burnt area pro-
ducts also were compared with the daily fire perimeter data. The

MCD45A1 and MCD45A1 were therefore co-registered with
the perimeter data. For all comparisons, we considered only the
pixels that were classified as burnt by both the MCD45A1 and

MCD64A1 products. Analysis of the efficacy of the MCD45A1
and MCD64A1 products in detecting burnt area is out of the
scope of the currentmanuscript and has been examined in earlier

work (Giglio et al. 2009; Roy and Boschetti 2009). No burnt
pixels were detected by the MCD45A1 algorithm in the Big
Meadow and Little Sand fires. For these fires, only the kriging

maps and the MCD64A1 product were compared with the daily
fire perimeter data.

Assessment of the kriging model using increased
acquisitions in high latitudes

We conducted a complimentary quality assessment of the kri-

ging interpolation method using data from higher latitude fires.
All seven Alaska fires included in this study were located
between 60 and 708N latitude (Fig. 1c) and MODIS active fire

observations were collected up to eight times per day (www-air.
larc.nasa.gov/tools/predict.htm, accessed 21 October 2013). For
days with four or less acquisitions containing active fire detec-
tions, all acquisitions were used as input to the interpolation

model. For days that had more than four acquisitions containing
active fire detections, we randomly selected four acquisitions
as input to the interpolation model, and the remainder as vali-

dation data. By doing so, we mimicked the case of lower
latitude fires for which there is a maximum of four MODIS
acquisitions per day. We used decimal DOY values for this

Table 2. Kriging parameters and the first quartile (Q1), median (Q2) and third quartile (Q3) of the kriging standard error and the standard error

due to potential geolocation errors in the MO(Y)14 product

n is the number of observations included to calculate a pixel’s value

Region Kriging parameters Kriging standard

error (days)

Standard error due

to geolocation error (days)

Fire name Nugget

(days2)

Sill

(days2)

Range

(km)

R2 n Q1 Q2 Q3 Q1 Q2 Q3

South-west

Big Meadow 0 15 8 0.91 4 0.85 0.92 1.01 0.69 1.01 1.32

Gladiator 0 11 9 0.96 5 0.81 0.89 0.96 0.62 0.89 1.16

Horseshoe 0 273 40 0.98 5 1.30 1.43 1.56 0.66 1.04 2.00

Little Sand 0 110 6 0.95 4 1.64 1.81 2.01 1.74 2.72 4.49

Station 0.27 11 35 0.93 5 0.84 0.87 0.91 0.24 0.34 0.53

Waldo Canyon 0 2 4 0.85 4 0.73 0.80 0.90 0.21 0.45 0.82

Wallow 0 28 17 0.95 4 0.93 1.03 1.15 0.47 0.82 1.29

Whitewater Baldy 0.47 34 17 0.97 5 1.10 1.16 1.23 0.57 0.92 1.37

Zaca 0 411 76 0.86 5 1.18 1.28 1.39 0.35 0.69 1.36

Alaska

Boundary 12.84 334 26 0.97 5 2.19 2.26 2.36 0.48 0.95 2.02

Dall City 0 158 12 0.67 5 1.50 1.67 1.84 0.48 1.03 3.25

Little Black One 2.85 128 15 0.78 5 1.62 1.70 1.80 1.05 2.04 3.30

Minto Flats South 0 132 33 0.97 5 1.14 1.27 1.40 0.68 1.30 2.37

North Dag 0 612 64 0.96 5 1.53 1.70 2.00 0.49 0.88 2.53

Pingo 31.00 857 47 0.99 5 2.60 2.65 2.73 0.96 1.93 4.13

Wintertrail 134.00 333 34 0.94 6 3.55 3.56 3.57 0.67 1.96 4.46
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analysis. TheDOYvalues estimated by the kriging interpolation
at the location of theMO(Y)D14 observations that were used for

validation were regressed against the MO(Y)D14 observations
at these same locations.

Results

The kriging parameters (nugget, sill, range and number of
observations included) varied across the fires studied (Table 2).

(a) MO(Y)D14
109.0�W109.5�W

34.0�N

33.5�N

(c) Kriging

(b) View zenith angle

0   

(d ) Kriging standard error

(e) Standard error due to
geolocation errors
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Fig. 3. ObservedMO(Y)D14 active fire observations (a), view zenith angles (b), fire progression

derived by kriging (c), kriging standard error (d ) and standard error due to geolocation errors (e) for

the 2011 Wallow fire in Arizona and New Mexico.
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The spherical variogram fit yielded R2 values between 0.67 and

0.99. Most fires did not exhibit a nugget effect, although the
Station, Whitewater Baldy, Boundary, Little Black One, Pingo
and Wintertrail fires had nugget values larger than 0 days2. Sill

and range values varied widely, respectively between 2 and 857
days2 and 4 and 76 km. The number of observations included in
the interpolation was between four and six for all fires. The

median kriging standard error was 0.80–3.56 days, and the
median standard error due to potential geolocation errors was
0.34–2.72 days.

The original MO(Y)D14 active fire observations, the view

zenith angles of the MO(Y)D14 observations, the kriging map,
the kriging standard error and the standard error due to geoloca-
tion uncertainties are shown in Fig. 3 for the case of the Wallow

fire. The Wallow fire started at DOY 150 in 2011 from two
separate ignitions that joined and quickly progressed for the first
15 days, after which the fire more slowly spread before being

contained on DOY 177. The MODIS active fire detections had
a discontinuous distribution in the Wallow fire perimeter, with
dense areas contrasting with areas in which few fire pixels were
detected. View zenith angles ranged between 0 and 558 and their
distribution in the fire perimeter was evenly spread. Areas with
fewMODIS active fire observationswere associatedwith higher
kriging standard errors, whereas the standard error due to

geolocation error tended to be higher in areas dense in active
fire detections (Fig. 3). The median kriging standard error
increased with increasing distance of the pixel to the

MO(Y)D14 observation included (Fig. 4a). The median stan-
dard error due to geolocation errors was also higher with
increasing distance of the pixel to the MO(Y)D14 observations

included. However, for shorter distances (smaller than 2000m)

many outliers with high errors were apparent (Fig. 4b). The

mean view zenith angle of the MO(Y)D14 observations includ-
ed in the interpolation had little effect on the kriging standard
error and the standard error due to geolocation error. The

standard error due to geolocation error was higher when the
mean view zenith angle of the MO(Y)D14 observations includ-
ed was larger than 508 than when mean view zenith angles were

smaller than 508 (Fig. 4c–d ). However, mean view zenith angles
larger than 508 represented only a small fraction of the data
(,1%). All these pixels corresponded with outliers in areas with
high densities of active fire observations that had high geoloca-

tion errors in Fig. 4b. The exclusive location in high density
areas and the limited sample size of this class explains the
observed discontinuity for the class with mean view zenith

angles larger than 508 in Fig. 4d.
The perimeters and daily fire progression map from the

USFS, along with the MCD45A1 and MCD64A1 products for

the case of the Wallow fire are depicted in Fig. 5. For seven out
of the nine fires, the kriging method performed better than the
MCD45A1 or MCD64A1 products, whereas for the other two
fires MCD64A1 had the highest level of performance (for the

Big Meadow and Little Sand fires) (Fig. 6). On average, 34% of
the data (s.d.¼ 15%) were assigned the correct DOY by the
kriging interpolation across the different fires, compared with

12% (s.d.¼ 6%) for MCD45A1 and 21% (s.d.¼ 7%) for
MCD64A1. Seventy-three percent (s.d.¼ 15%) of the data were
classified within a 1-day accuracy using kriging, compared with

33% (s.d.¼ 15%) for MCD45A1 and 53% (s.d.¼ 5%) for
MCD64A1 (Table 3). It is also clear from Fig. 6j, in which the
results were averaged over the nine fires, that both MCD45A1

and MCD64A1 had a tendency to estimate later burn dates
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compared with the fire perimeter data (positive time differences
in Fig. 6j). In addition, the kriging product had a higher

percentage of the data with a temporal accuracy of less than 3
days (on average 93% according to Table 3).

For seven of the nine fires, the kriging interpolation resulted

in the highest correlation (R2¼ 0.30–0.96) of the daily burnt area
estimates as compared with the daily burnt area from the USFS
fire perimeter data (Table 4). The MCD64A1 product had the

highest correlation for theHorseshoe andBigMeadow fireswith
respective R2 values of 0.61 and 0.84. We divided the root mean
squared error (RMSE) by the sample area of the fire to normalise

for sample size. This statistic gave similar trends as the R2

values: the kriging interpolation resulted in the lowest normal-
ised RMSE for seven fires. The MCD64A1 product scored best
for the Horseshoe and BigMeadow fires and theMCD45A1 had

the lowest normalised RMSE for the Station fire. Averaged over
the nine fires, the kriging method had the highest R2 (R2¼ 0.64,
s.d.¼ 0.26) compared with 0.17 (s.d.¼ 0.23) for the MCD45A1

product and 0.47 (0.22) for theMCD64A1 product. Nonetheless,

caution should be applied when interpreting these results
because of the small sample sizes for several fires. This is

because we only included pixels that were detected in both the
MCD45A1 and MCD64A1 products.

For the Alaskan fires, the kriging interpolation provided

estimates of the time of burning that closely matched the
observations in many instances (Table 5). For all fires, the
kriging model predicted the time of burning with R2 values

between 0.97 and ,1.0 (,1.0 for all data pooled), whereas
the RMSEs were between 0.70 and 1.63 days (1.25 days for
all data pooled). In addition, the mean temporal difference

between the kriging estimates and the MODIS data used for
validation ranged between�0.09 and 0.05 days across all seven
fires (�0.01 days for all data pooled).

Discussion

The potential of the temporal information of the MODIS
active fire product (Giglio et al. 2003) to improve our under-

standing of fire processes has beenwell recognised (Giglio 2007;

(a) USFS perimeters
109.0�W109.5�W

34.0�N

33.5�N

(c) MCD45A1

(b) USFS perimeters

(d ) MCD64A1

0 10 km

N

150 155 160 165 170 180175

150 155 160 165 170 180175

Day of the year

Day of the yearDay of the year

150 155 160 165 170 180175

Fig. 5. Observed daily fire perimeter data from the US Forest Service (USFS) (a, b), and fire

progressions maps of the MCD45A1 (c) and MCD64A1 (d ) products for the 2011 Wallow fire in

Arizona and New Mexico.
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Loboda and Csiszar 2007; Mu et al. 2011; Thorsteinsson et al.

2011). However, within individual fire perimeters the MODIS

active fire detections generally result in a discontinuous distri-
butionwithmany gaps (Fig. 3a). This discontinuity can be partly
attributed to cloud and smoke, and fire spread rates that are high

compared with satellite sampling intervals. Cloud cover sig-
nificantly reduces the number of active fire detections. Latitude
influences the number of overpasses and their timing. Local

conditions such as the distribution of fuels, fuelmoisture and fire
weather influence the fire spread rate.

Here we applied kriging, a well-accepted interpolation tech-

nique (Royle et al. 1981; Holdaway 1996), toMODIS active fire
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Fig. 6. Fraction of the burnt areawith time differences (between,�3 and.3 in daily steps) between kriging,MDC45A1orMCD64A1 estimates and

the US Forest Service (USFS) observations for the nine fires in the south-west. Positive time differences indicate a later estimate of the day of burning

compared with the USFS observations. Panel j gives the averages (and standard deviations as error bars) over the nine fires. (Note that the BigMeadow

and Little Sand fire were not detected by the MCD45A1 algorithm and as such this product was not included for these fires). These numbers are also

summarised in Table 3.

Table 3. Average (standard deviation) reporting accuracy (%) over

the nine south-western fires (Fig. 1) within 0, 1, 2 or 3 days for the

comparison between kriging, MCC45A1, or MCD64A1 products and

daily US Forest Service (USFS) perimeter data

0 days 1 day 2 days 3 days

Kriging–USFS 34 (15) 73 (15) 87 (10) 93 (7)

MCD45A1–USFS 12 (6) 33 (15) 49 (21) 63 (25)

MCD64A1–USFS 21 (7) 53 (5) 73 (5) 86 (3)
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observations to create continuous fire progression maps at
moderate-resolution scale (500m). Kriging uses local informa-
tion in a spatial interpolation model. The local information as

represented by spatial distribution of the MODIS active fire
overpass times was quantified by a variogram fit for each
fire. The two main reasons why we chose kriging as an inter-
polation technique are that it (1) is based on local variogram

analysis, which is used to parameterise the interpolation model,
and (2) allows an uncertainty analysis by spatially estimating
the kriging standard error (Holdaway 1996). Other and less

complex interpolation models such as inverse distance weight-
ing (Watson and Philip 1985) may also be very useful for
mapping fire progression based on active fire data. For example,

preliminary tests demonstrated that inverse distance weighting
achieved similar performances as kriging when compared with
the USFS observations.

The kriging error depends on the variogram parameters and
the pixel’s distance to the active fire observations included in the
interpolation. Naturally, the kriging error increased with
increasing distance to the active fire observations (Figs 3c,

4a). In contrast, the highest errors due to potential geolocation
errors were found in areas with a high density of active fire
observations (Figs 3e, 4b). Dense active fire areas are the result

of a slow-moving fire front. In these areas, small variations in the
geolocation of the active fire observations can result in signifi-
cant errors. Given that the fire front moved slowly in these areas,

a distribution of active fire observations with widely varying
scan angles can influence the location of individual observa-
tions, and subsequently affect the resulting prediction of the time
of burning. In contrast, in many areas with few active fire

observations, often as a result of a fast-moving fire front, small
variations in geolocation have little influence on which observa-
tions are included in the interpolation, and thus have little effect

on estimates of burning. The increasing sub-pixel geolocationT
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) Table 5. Intercept (a), slope (b), coefficient of determination (R2)

and root mean squared error (RMSE) of the linear regression fits

between the day of the year kriging on the location of the MO(Y)D14

validation data (dependent variable) v. the day of the year from the

MO(Y)D14 validation data (independent variable) for the seven fires

in Alaska

The results of the regression were the pooled data from all fires are also

provided. Themean difference is defined as the day of the year of theMO(Y)

D14 validation data minus the day of the year estimated by kriging on the

location of the MO(Y)D14 validation data. (n¼ the number of points in the

validation dataset)

Fire name n Mean

difference

(days)

a b R2 RMSE

(days)

Boundary 1516 0.04 1.82 0.99 ,1 1.03

Dall City 2422 ,0 3.54 0.98 0.99 0.99

Little Black One 1521 �0.08 8.54 0.96 0.97 1.63

Minto Flats

South

1644 0.04 3.49 0.98 0.99 1.00

North Dag 501 0.05 1.04 0.99 ,1 0.70

Pingo 2214 �0.02 1.76 0.99 ,1 1.42

Wintertrail 1817 �0.09 3.41 0.98 0.99 1.43

All fires 11 635 �0.01 1.41 0.99 ,1 1.25

J Int. J. Wildland Fire S. Veraverbeke et al.



uncertainty with increasing view zenith angles is likely the
most important error source of the interpolation analysis and
might be reduced in future work by modifying the selection

criteria for active fires in dense clusters (i.e. modify the kriging
algorithm to select low scan angle observations in high density
regions). The co-registration between the fire perimeter data, the

kriging results, and the MCD45A1 and MCD64A1 products
may introduce additional sources of error in our comparisons.
The MODIS point spread function (PSF) may introduce addi-

tional noise in the interpolationmodel. As a result of theMODIS
PSF, the spectral response of a pixel is determined not only by
the area from the pixel itself but also by adjacent areas (Wolfe
et al. 2002). This creates partial overlap between neighbouring

pixels and may result in the same thermal anomaly being
detected more than once.

Averaged over the nine south-west fires, the kriging interpo-

lation demonstrated a within-1-day accuracy of 73%, which
outperformed the temporal accuracies of the day of burning
reported by the MCD45A1 and MCD64A1 products (Table 3).

In addition, a regression analysis over seven Alaska fires
resulted in RMSEs between 0.70 and 1.63 days (Table 5). The
kriging interpolation over the Alaska fires only used four out of

eight MODIS acquisitions per day to mimic the MODIS acqui-
sition scheme at lower latitude locations. Therefore, even better
performances can be expected for higher latitude fires if all data
are included in the kriging interpolation. The accuracy of the

kriging progression models will thus depend on the latitude of
the fire location. The interpolation will benefit from more daily
acquisitions by MODIS at higher latitudes, and possibly in the

future from a combination of Visible Infrared Imager Radio-
meter Suite (VIIRS) and MODIS observations.

The MCD45A1 andMCD64A1 products showed a tendency

to predict later burn dates than the USFS observations (Fig. 6j).
This time delay may occur because both products use post-fire
reflectance changes in their algorithm to detect the burning and
assign the date of burning. Any gap in surface reflectance from

incomplete satellite coverage or smoke or cloud cover will
create a larger interval spanning the burn date. In addition,
differences in the way the USFS daily fire perimeter data were

collected compared with the functioning of the active fire and
burnt area algorithms may explain some of this bias. For
example, it is likely that the USFS perimeters span across

different areas that have burnt incompletely, because the outer
perimeter is probably the most critical variable of interest for
fire managers attempting to design containment strategies. The

active fire and burnt area products, in contrast, will record
thermal anomalies (and burnt areas) at later times as gaps within
the outer perimeter are subsequently burnt by infilling.

In a global accuracy assessment of the day of burning

reported by the MCD45A1 product, Boschetti et al. (2010)
found that 50% of the burnt area detections occurred within
the accuracy of a single day. We found that 34% of the burnt

pixels within the MCD45A1 product were assigned the date
within a single-day accuracy, when averaged over the nine fires
over the south-western US in this study (Table 3). Although the

fires included in this study occurred in different ecosystems
including grassland, shrubland and coniferous forest, the overall
accuracy depends on the selected study areas and thus we do not
expect our accuracy assessment to necessarily agree with those

conducted on other regions, including the one reported by
Boschetti et al. (2010). It is also important to note that the
temporal accuracy for the majority of the pixels detected by

the MCD45A1 product (Table 2) was considerably better than
the nominal uncertainty of 8 days as reported by Roy et al.

(2005). The higher performance of the MCD64A1 compared

with MCD45A1 may originate from the synergetic use of post-
fire reflectance changes and active fire detections inMCD64A1.

Fire spread is largely governed by fuel availability, topo-

graphy and weather (Finney 2001, 2003). Fuel types, distribu-
tion, density and moisture content are critical to a landscape’s
capacity to carry fire (Papadopoulos and Pavlidou 2011). The
fuel moisture content is determined by both a long-term effect of

pre-fire weather, as well as the weather during the fire event
(Pereira et al. 2005). Fire occurrence is favoured by low
humidity and high temperature, whereas wind speed has long

been recognised as the crucial factor influencing the rate of
spread of wildfires (Rothermel 1972; Fosberg 1978). In addi-
tion, interactions of fuels and weather with local topography can

greatly influence fire activity (Moritz et al. 2010; Sharples et al.
2012). Fire behaviour models incorporate information on fuels,
topography and weather to predict fire spread (Sullivan 2009a,

2009b, 2009c). Comparison of fire behaviour model outcomes
against real-world fires has indicated that models typically do
not accurately predict fire progression (Papadopoulos and
Pavlidou 2011; Finney et al. 2013). Our method to map fire

progression based on remote sensing observations provides an
independent information source to assess the performance of
fire spread models. In addition, fire progression maps derived

from remote sensing can be used to revisit relationships between
environmental controls (fuels, topography and weather) and fire
spread rates across different ecosystems, and as such they can

contribute to improved fire behaviour models. Another applica-
tion of fire progression maps lies within the bottom-up calcula-
tion of wildfire emission models which quantify the burnt area,
fuel load, combustion completeness and emission factors. Fuel

load, combustion completeness and emission factors fluctuate
on short temporal scales (Boschetti et al. 2010; van Leeuwen
and van der Werf 2011). Current wildfire emission models,

however, use fixed values for these variables throughout the
whole fire scar or operate with a coarse temporal resolution (van
der Werf et al. 2010; French et al. 2011). Detailed temporal

information on fire progression may allow daily weather data to
be incorporated into fuel load, combustion completeness and
emission factor estimates. This would reduce uncertainties in

these variables and associated emissions.

Conclusions

This study presented a kriging interpolation to construct con-
tinuous fire progression maps from MODIS active fire data at
a moderate spatial scale (500m). Overall, the kriging inter-

polation mapped 73% of the area burnt within the accuracy of
a single day and outperformed the two existing MODIS burnt
area products. Spatially explicit temporal wildfire emissions

are a critical input for a variety of applications such as regi-
onal air transport models. Temporal information on burnt area
progression is also important to allow temporal bottom-up
inventories of wildfire emissions. In addition, fuel load and
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combustion completeness estimates generally require weather
inputs to account for the fuel moisture content. Fire progression
maps allow these variables to vary temporally instead of

assuming a fixed value for the whole fire event. Fire progression
maps also permit studying the environmental controls such as
fire weather and fuel distributions on fire behaviour and char-

acteristics. The method presented here has potential for
improving fire emissions estimates and for validating and con-
structing better fire behaviour models.
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